Malgrange theorem for entire functions on nuclear spaces

  • Philip J. Boland
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 364)


Uniform Convergence Topological Vector Space Finite Type Exponential Type Convolution Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boland, P., and Dineen, S., Convolution Operators on G-Holomorphic Functions in Infinite Dimensions (to appear in the Transactions of the American Mathematical Society).Google Scholar
  2. 2.
    Dieudonne, J., and Schwartz, L., La dualite dans les espaces (F) et (D F), Annales de l'Institut Fourier (Grenoble), tome 1, 1949, pp. 61–101.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dineen, S., Holomorphic Functions on Locally Convex Topological Vector Spaces (to appear in Annals de Institut Fourier).Google Scholar
  4. 4.
    Gupta, C.P., Convolution Operators and Holomorphic Functions on a Banach Space, Semanaire D'Analyse Moderne, No.2, Universite de Sherbrooke.Google Scholar
  5. 5.
    Malgrange, B., Existence et approximation des solutions des equations aux derivees partielles et des equations des convolutions, Annales de l'Institut Fourier Grenoble, IV, pg. 271–355, 1955–56.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Nachbin, Leopoldo, Topology on Spaces of Holomorphic Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 47, Springer Verlag, New York, 1969.Google Scholar
  7. 7.
    Pietsch, Albrecht, Nuclear Locally Convex Spaces, Ergebnisse der Mathematik und ihrer Grenzgebrete, Band 66, Springer Verlag, New York, 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin 1974

Authors and Affiliations

  • Philip J. Boland
    • 1
  1. 1.School of MathematicsUniversity College of DublinBelfield, Dublin 4Ireland

Personalised recommendations