Advertisement

On bounded sets of holomorphic mappings

  • Jorge Alberto Barroso
  • Mário C. Matos
  • Leopoldo Nachbin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 364)

Keywords

Holomorphic Mapping Neighborhood Versus Closed Unit Ball Baire Space Compact Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J. A. Barroso, Topologias nos espaços de aplicações holomorfas entre espacos localmente convexos, Anais da Academia Brasileira de Ciências 43(1971), 527–546.MathSciNetGoogle Scholar
  2. 2.
    J. A. Barroso and L. Nachbin, Sur certaines propriétés bornologiques des espaces d'applications holomorphes, Troisième Colloque sur l'Analyse Fonctionnelle, Liège 1970, Centre Belge de Recherches Mathématiques, Vander, Belgium (1971), 47–55.Google Scholar
  3. 3.
    S. Dineen, Unbounded holomorphic functions on a Banach space, Journal of the London Mathematical Society 4(1972), 461–465.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Dineen, Holomorphic functions on locally convex topological vector spaces, Annales de l'Institut Fourier, to appear in two parts.Google Scholar
  5. 5.
    L. Nachbin, On the topology of the space of all holomorphic functions on a given open set, Indagationes Mathematicae 29(1967), 366–368.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. Nachbin, Topology on spaces of holomorphic mappings, Springer-Verlag, Germany (1969).CrossRefzbMATHGoogle Scholar
  7. 7.
    L. Nachbin, Sur les espaces vectorielles topologiques d'applications continues, Comptes Rendus de l'Académie des Sciences de Paris 271(1970), 596–598.MathSciNetzbMATHGoogle Scholar
  8. 8.
    L. Nachbin, Concerning spaces of holomorphic mappings, Rutgers University, USA (1970).zbMATHGoogle Scholar
  9. 9.
    L. Nachbin, Recent developments in infinite dimensional holomorphy, Bulletin of the American Mathematical Society 79(1973), to appear.Google Scholar
  10. 10.
    Ph. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North-Holland, Netherlands (1973).zbMATHGoogle Scholar
  11. 11.
    G. Coeuré, Analytic functions and manifolds in infinite dimensional spaces, North-Holland, Netherlands, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin 1974

Authors and Affiliations

  • Jorge Alberto Barroso
    • 1
    • 2
  • Mário C. Matos
    • 1
    • 2
  • Leopoldo Nachbin
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of RochesterRochesterUSA
  2. 2.Instituto de MatemáticaUniversidade Federal do Rio de JaneiroRio de Janeiro, GBBrasil

Personalised recommendations