Advertisement

Holomorphic extensions and domains of holomorphy for general function algebras

  • C. E. Rickart
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 364)

Keywords

Finite Subset Hausdorff Space Plurisubharmonic Function Compact Hausdorff Space Basic Neighborhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    I. Glicksberg, Maximal algebras and a theorem of Rado, Pacific J. Math. 14(1964), 919–941.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1965.zbMATHGoogle Scholar
  3. 3.
    M. C. Matos, Holomorphic mappings and domains of holomorphy, Dissertation, University of Rochester, 1970.Google Scholar
  4. 4.
    Ph. Noverraz, Pseudo-Convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinite, North-Holland Math. Studies, No. 3, 1973.Google Scholar
  5. 5.
    C. E. Rickart, Analytic phenomena in general function algebras, Pacific J. Math. 18(1966), 361–377.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    _____, Holomorphic convexity in general function algebras, Canadian J. Math. 20(1968), 272–290.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    _____, Analytic functions of an infinite number of complex variables, Duke Math. J. 36(1969), 581–598.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    _____, Plurisubharmonic functions and convexity properties for general function algebras, Trans. Amer. Math. Soc. 169(1972), 1–24.MathSciNetCrossRefGoogle Scholar
  9. 9.
    _____, A function algebra approach to infinite dimensional holomorphy, Proc. Colloq. Analysis, Rio de Janeiro, 1972 (Ed.: L. Nachbin), Act. Sci. et Ind., Harmann, Paris, 1973.Google Scholar
  10. 10.
    H. Rossi, The local maximum modulus principle, Ann. of Math. (2) 72(1960), 1–11.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Schottenloher, Analytische Fortsetzung in Banachräumen, Dissertation, Munich 1971, Math. Annalen 199(1972), 313–336.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin 1974

Authors and Affiliations

  • C. E. Rickart
    • 1
  1. 1.Yale UniversityNew Haven

Personalised recommendations