Formes de Contact sur les Variétés de Dimension 3

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 209)


Transversalement Orientable Condition Suivante Contact Transverse Nous Utiliserons Soit Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.S. Chern, The geometry of G-structures. Bull. Amer. Math. Soc., 72, 1966, 167–219.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Martinet, Sur les singularités des formes différentielles extérieures. Ann. Inst. Fourier, Grenoble, 20, 1970, 95–178.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques. Hermann, Paris, 1945.zbMATHGoogle Scholar
  4. [4]
    J.W. Gray, Some global properties of contact structures. Ann. Math. 69, 1959, 421–450.CrossRefzbMATHGoogle Scholar
  5. [5]
    R. Lutz, Sur l’existence de certaines formes différentielles remarquables sur la sphere S3. C.R.A.S., Paris.Google Scholar
  6. [6]
    W.B. Lickorish, A foliation for 3-manifolds. Ann. Math. 82, 1965, 414–420.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    C.J. Earle and J. Eells, A fibre bundle description of Teichmüller theory. J. Diff. Geom., 3, 1969, 19–43.MathSciNetzbMATHGoogle Scholar
  8. [8]
    M.L. Gromov, Stable maps of foliations in manifolds. Izv. Akad. Nauk. S.S.S.R. 33 (1969) 707–734.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

There are no affiliations available

Personalised recommendations