A proof of a conjecture of loewner and of the caratheodory conjecture concerning umbilic points

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 209)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bol, G., Über Nabelpunkte auf einer Eifläche, Math. Zeit. 49, (1944), 389–410.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Hamburger, H., Beweis einer Caratheodoryschen Vermutung I, Ann. of Math (2) (1940) 63–86.Google Scholar
  3. [3,4]
    Hamburger, H., ____, II, III, Acta Math., (1941), 175–228, 229–332.Google Scholar
  4. [5]
    Klotz, T., On G. Bol’s Proof of the Caratheodory Conjecture, Comm. Pure Appl. Math. 12, (1959), 277–311MathSciNetCrossRefzbMATHGoogle Scholar
  5. [6]
    Little, J., Geometric Singularities, This volume, pp.Google Scholar
  6. [7]
    Loewner, C., A Topological Characterization of a Class of Integral Operators, Ann. of Math. (2), 41 (1940), 63–86.MathSciNetGoogle Scholar
  7. [8]
    Norton, V.T. Differential and Polynomial Transvections in the Plane, Thesis, Univ. of Mich. (1970), Ann Arbor.Google Scholar
  8. [9]
    Titus, C.J., The Combinatorial Topology of Analytic Functions on the Boundary of a disc, Acta Math. 106 (1961), 45–64.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [10]
    Titus, C.J., Characterizations of the Restriction of a Holomorphic Function to the Boundary of a disc.Google Scholar
  10. [11]
    Titus, C.J. & Young, G.S. An Extension Theorem for a Class of Differential Operators, Mich. Math. J. 6 (1959), 195–204.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

There are no affiliations available

Personalised recommendations