Advertisement

A sheaf - Theoretic interpretation of the kuroš theorem

  • Mary Turgi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 616)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.M. Arnold and E.L. Lady, Endomorphism rings and direct sums of torsion-free abelian groups, Trans. Amer. Math. Soc. 211(1975), 225–237.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    L. Fuchs, Infinite Abelian Groups. v. 2, Academic Press, New York, 1973.Google Scholar
  3. 3.
    J. Frenkel, Cohomologie non-abélienne et éspaces fibrés, Bull. Soc. Math. France, 85(1957), 135–218.MathSciNetMATHGoogle Scholar
  4. 4.
    R. Godement, Topologie Algébrique et Théorie des Faisceaux, Hermann, Paris, 1964.MATHGoogle Scholar
  5. 5.
    A. Grothendieck, A General Theory of Fibre Spaces with Structure Sheaf, University of Kansas Mathematics Department, 1955.Google Scholar
  6. 6.
    and J. Dieudonné, Eléments de Géometrie Algébrique I, Springer, Berlin, Heidelburg, and New York, 1971.MATHGoogle Scholar
  7. 7.
    I. Kaplansky, Infinite Abelian Groups, 2nd Edition, University of Michigan Press, Ann Arbor, 1971.MATHGoogle Scholar
  8. 8.
    E.L. Lady, Splitting fields for torsion-free modules over discrete valuation rings, I, preprint.Google Scholar
  9. 9.
    I.G. MacDonald, Algebraic Geometry: Introduction of Schemes, Benjamin, New York, 1968.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Mary Turgi

There are no affiliations available

Personalised recommendations