First order hyperbolic equations

  • Philip Brenner
  • Vidar Thomée
  • Lars B. Wahlbin
Part of the Lecture Notes in Mathematics book series (LNM, volume 434)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ansorge, C. Geiger and R. Hass, Existenz und numerische Erfassbarkeit verallgemeinerter Lösungen halblinearer Anfangswertaufgaben, Z. Angew. Math. Mech. 52 (1972), 597–605.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ph. Brenner, The Cauchy problem for symmetric hyperbolic systems in Lp, Math. Scand. 19 (1966), 27–37.MathSciNetMATHGoogle Scholar
  3. 3.
    Ph. Brenner, The Cauchy problem for systems in Lp and Lp,α, Ark. Mat. 11 (1973), 75–101.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ph. Brenner and V. Thomée, Stability and convergence rates in Lp for certain difference schemes, Math. Scand. 27 (1970), 5–23.MathSciNetMATHGoogle Scholar
  5. 5.
    Ph. Brenner and V. Thomée, Estimates near discontinuities for some difference schemes. Math. Scand. 28 (1971), 329–340.MathSciNetMATHGoogle Scholar
  6. 6.
    G.W. Hedstrom, Norms of powers of absolutely convergent Fourier series, Michigan Math. J. 13 (1966), 393–416.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    G.W. Hedstrom, The rate of convergence of some difference schemes, SIAM J. Numer. Anal. 5 (1968), 363–406.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    V. Thomée, On maximum-norm stable difference operators, Numerical Solution of Partial Differential Equations, Ed. J.H. Bramble, Academic Press, New York 1966, 125–151.Google Scholar
  9. 9.
    V. Thomée, On the rate of convergence of difference schemes for hyperbolic equations, Numerical Solution of Partial Differential Equations II, Ed. B. Hubbard, Academic Press, New York 1971, 585–622.Google Scholar
  10. 10.
    V. Thomée, Convergence analysis of a finite difference scheme for a simple semi-linear hyperbolic equation, Numerische Behandlung nichtlinearer Integro-differential-and Differentialgleichungen, Springer Lecture Notes in Mathematics 395, 149–166.Google Scholar
  11. 11.
    L. Wahlbin, Maximum norm estimates for Friedrichs' scheme in two dimensions, to appear in SIAM J. Numer. Anal. 11 (1974).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Philip Brenner
  • Vidar Thomée
  • Lars B. Wahlbin

There are no affiliations available

Personalised recommendations