Advertisement

Theoremes de finitude pour les espaces p-convexes, q-concaves et (p,q)-convexes-concaves

  • Jean-Pierre Ramis
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 409)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [A.G.]
    A. Andreotti et H. Grauert. Thèorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 90, 1962, p. 193 à 259.MathSciNetMATHGoogle Scholar
  2. [A.V.]
    A. Andreotti et E. Vesentini. Carleman Estimates... Publ. Math. I.H.E.S.Google Scholar
  3. [F.]
    W. Fischer. Eine Bemerkung zu einem Satz von... Math. Ann. 184, 1970. p. 297–299.MathSciNetCrossRefMATHGoogle Scholar
  4. [M.]
    B. Malgrange. Some remarks on the Notion of Convexity for Differential Operators. Bombay Colloquium. 1964.Google Scholar
  5. [N.]
    Narasimhan R., The Levi problem... Math. Ann. 142, 1961, p. 355–365.MathSciNetCrossRefMATHGoogle Scholar
  6. [R.R.]
    J.P. Ramis et G. Ruget. Complexe Dualisant.... Publ. Math. I.H.E.S. no38Google Scholar
  7. [R.R.’.]
    J.P. Ramis et G. Ruget. Article à paraître sur la dualité relative.Google Scholar
  8. [R.]
    J.P. Ramis. Article à paraîtreGoogle Scholar
  9. [R.R.V.]
    Dualité relative... Inv. Math. 13. 1971. p. 261–283.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Jean-Pierre Ramis

There are no affiliations available

Personalised recommendations