Probleme de Lewy

  • Aldo Andreotti
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 409)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 0.
    A. Andreotti et D.C. Hill. (a) Complex characteristic coordinates and tangential Cauchy — Riemann equationsGoogle Scholar
  2. (b).
    E.E. Levi convexity and H. Lewy problem; reduction to vanishing theoremsGoogle Scholar
  3. (c).
    E.E. Levi convexity and H. Lewy problem; the vanishing theorems à paraître aux Ann. Sc. Norm. Sup. Pisa. The utilisation of Whitney theorem was suggested to us by R. Nirenberg.Google Scholar
  4. 1.
    A. Andreotti et F. Norguet. Problème de Levi et convexité holomorphe pour les classes de cohomologie. Ann. Sc. Norm. Sup. Pisa 20, 1966, p. 197–241MathSciNetzbMATHGoogle Scholar
  5. 2.
    J.J. Kohn and L. Nirenberg. Non coercive boundary problems. Comm. Pure and Appl. Math. t. 18 1965 p. 443–492.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 3.
    H. Lewy. On the local character of the solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables. Ann. of Math. s.2 t. 54, 1956, p. 514–522MathSciNetCrossRefzbMATHGoogle Scholar
  7. 4.
    H. Lewy. An exemple of a smooth linear partial differential equation without solutions Ann. of Math. s.2. t. 66, 1957, p. 155–158MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Aldo Andreotti

There are no affiliations available

Personalised recommendations