Different applications of convex and nonconvex optimization, especially to differential equations

  • L. Collatz
Part of the Lecture Notes in Mathematics book series (LNM, volume 448)


Some applications of nonlinear optimization, especially of convex, pseudoconvex, quasiconvex and other types of optimization, to analysis and differential equations are described.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [70]
    Abadie, J.: Integer and nonlinear programming. Amsterdam: North Holland Publ. Comp. 1970, 544 p.MATHGoogle Scholar
  2. [66]
    Collatz, L.: Functional Analysis and Numerical Mathematics. Academic Press 1966, 473 p.Google Scholar
  3. [69]
    Collatz, L.: Nichtlineare Approximationen bei Randwertaufgaben. Wiss. Z. Hochsch. Architektur u. Bauwesen Weimar, V. IKM 1969, 169–182.Google Scholar
  4. [70]
    Collatz, L.: Applications of nonlinear optimization to approximation problems. In: Integer and nonlinear programming. Amsterdam: North Holland Publ. Comp. 1970, p. 285–308.Google Scholar
  5. [71]
    Collatz, L. and W. Wetterling: Optimierungsaufgaben, Springer, 2. Aufl. 1971, 222 p. English edition to appear.Google Scholar
  6. [73]
    Collatz, L. and W. Krabs: Approximationstheorie, Teubner Stuttgart 1973, 208 p.Google Scholar
  7. [74]
    Guenther, R.: Some nonlinear parabolic differential equations, to appear.Google Scholar
  8. [69]
    Mangasarian, O.L.: Nonlinear programming. New York: Mc Graw Hill 1969, 220 p.MATHGoogle Scholar
  9. [70]
    Stoer, J. and C. Witzgall: Convexity and optimization in finite dimensions I. Berlin-Heidelberg-New York: Springer 1970, 293 p.CrossRefMATHGoogle Scholar
  10. [71]
    Tolle, H.: Optimierungsverfahren, Berlin-Heidelberg-New York: Springer 1971, 291 p.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • L. Collatz

There are no affiliations available

Personalised recommendations