Some exponential moments with applications to density estimation, the empirical distribution function, and lacunary series

  • J. Kuelbs
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 644)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bickel, P. J. and Rosenblatt, M. (1973), On some global measures of the deviations of density function estimates, Annals of Statistics, Vol. 1, 1071–1095.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Billingsley, P. (1968), Convergence of probability measures, John Wiley & Sons, New York.MATHGoogle Scholar
  3. [3]
    Chung, K. L. (1949), An estimate concerning the Kolmogorov limit distribution, Trans. Amer. Math. Soc., Vol. 67, 36–50.MathSciNetMATHGoogle Scholar
  4. [4]
    Dudley, R. M. (1968), Distances of probability measures and random variables, Annals of Mathematical Statistics, Vol. 39, 1563–1572.MathSciNetMATHGoogle Scholar
  5. [5]
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer-Verlag, Berlin-Heidelberg-New York, 1967.MATHGoogle Scholar
  6. [6]
    Kiefer, J. (1961), On large deviations of the empiric distribution function of vector chance variables and a law of the iterated logarithm, Pacific J. of Math., Vol. 11, 649–660.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J. Kuelbs, Some exponential moments of sums of independent random variables, Trans. Amer. Math. Soc. (to appear).Google Scholar
  8. [8]
    Kuelbs, J. (1976), Estimation of the multi-dimensional probability density function; Mathematics Research Center Technical Report #1646, University of Wisconsin, Madison.Google Scholar
  9. [9]
    Kuelbs, J. and Woyczynski, W., Lacunary series and exponential moments, submitted for publication.Google Scholar
  10. [10]
    Nadaraya, É. A. (1965), On non-parametric estimates of density functions and regression curves, Theory of Probability and Its Applications, Vol. 10, 186–190.CrossRefMATHGoogle Scholar
  11. [11]
    Parzen, E. (1962), On estimation of a probability density and mode, Ann. Math. Statistics, Vol. 33, 1065–1076.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Révész, P. (1976), On multivariate empirical density functions, preprint.Google Scholar
  13. [13]
    Rosenblatt, M. (1971), Curve estimates, Annals of Mathematical Statistics, Vol. 42, 1815–1842.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    W. Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Appl. Math., no. 12, New York, 1962.Google Scholar
  15. [15]
    R. Salem and A. Zygmund, La loi du logarithme itéré pour les sériés trigonométriques lacunaires, Bull. Sci. Math. 74 (1950), 209–224.MathSciNetMATHGoogle Scholar
  16. [16]
    Schuster, E. F. (1969), Estimation of a probability density function and its derivatives, Annals of Mathematical Statistics, Vol. 40, 1187–1195.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. Kuelbs
    • 1
  1. 1.Mathematics DepartmentUniversity of WisconsinMadison

Personalised recommendations