Advertisement

Some exponential moments with applications to density estimation, the empirical distribution function, and lacunary series

  • J. Kuelbs
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 644)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Bickel, P. J. and Rosenblatt, M. (1973), On some global measures of the deviations of density function estimates, Annals of Statistics, Vol. 1, 1071–1095.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Billingsley, P. (1968), Convergence of probability measures, John Wiley & Sons, New York.MATHGoogle Scholar
  3. [3]
    Chung, K. L. (1949), An estimate concerning the Kolmogorov limit distribution, Trans. Amer. Math. Soc., Vol. 67, 36–50.MathSciNetMATHGoogle Scholar
  4. [4]
    Dudley, R. M. (1968), Distances of probability measures and random variables, Annals of Mathematical Statistics, Vol. 39, 1563–1572.MathSciNetMATHGoogle Scholar
  5. [5]
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer-Verlag, Berlin-Heidelberg-New York, 1967.MATHGoogle Scholar
  6. [6]
    Kiefer, J. (1961), On large deviations of the empiric distribution function of vector chance variables and a law of the iterated logarithm, Pacific J. of Math., Vol. 11, 649–660.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J. Kuelbs, Some exponential moments of sums of independent random variables, Trans. Amer. Math. Soc. (to appear).Google Scholar
  8. [8]
    Kuelbs, J. (1976), Estimation of the multi-dimensional probability density function; Mathematics Research Center Technical Report #1646, University of Wisconsin, Madison.Google Scholar
  9. [9]
    Kuelbs, J. and Woyczynski, W., Lacunary series and exponential moments, submitted for publication.Google Scholar
  10. [10]
    Nadaraya, É. A. (1965), On non-parametric estimates of density functions and regression curves, Theory of Probability and Its Applications, Vol. 10, 186–190.CrossRefMATHGoogle Scholar
  11. [11]
    Parzen, E. (1962), On estimation of a probability density and mode, Ann. Math. Statistics, Vol. 33, 1065–1076.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Révész, P. (1976), On multivariate empirical density functions, preprint.Google Scholar
  13. [13]
    Rosenblatt, M. (1971), Curve estimates, Annals of Mathematical Statistics, Vol. 42, 1815–1842.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    W. Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Appl. Math., no. 12, New York, 1962.Google Scholar
  15. [15]
    R. Salem and A. Zygmund, La loi du logarithme itéré pour les sériés trigonométriques lacunaires, Bull. Sci. Math. 74 (1950), 209–224.MathSciNetMATHGoogle Scholar
  16. [16]
    Schuster, E. F. (1969), Estimation of a probability density function and its derivatives, Annals of Mathematical Statistics, Vol. 40, 1187–1195.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. Kuelbs
    • 1
  1. 1.Mathematics DepartmentUniversity of WisconsinMadison

Personalised recommendations