Advertisement

A minimax principle and applications to elliptic partial differential equations

  • Paul H. Rabinowitz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 648)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ljusternick, L.A. and L.G. Schnirelman, Topological Methods in the Calculus of Variations, Hermann, Paris, 1934.Google Scholar
  2. [2]
    Clark, D.C., A variant of the Ljusternick-Schnirelman theory, Indiana Univ. Math. J. 22 (1972), 65–74.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Rabinowitz, P.H., Variational methods for non-linear eigenvalue problems, Proc. Sym. on Eigenvalues of Nonlinear Problems, Edizioni Cremonese, Rome, 1974, 141–195.Google Scholar
  4. [4]
    Ambrosetti, A. and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Anal., 14, (1973), 349–381.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Ahmad, S., A.C. Lazer, and J.L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, to appear Ind. Univ. Math. J.Google Scholar
  6. [6]
    Rabinowitz, P.H., Some minimax theorems and applications to non-linear partial differential equations, to appear.Google Scholar
  7. [7]
    Coffman, C.V., A minimax principle for a class of nonlinear integral equations, J. Analyse Math. 22 (1969), 391–419.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Paul H. Rabinowitz
    • 1
  1. 1.Mathematics DepartmentUniversity of WisconsinMadison

Personalised recommendations