Fractions rationnelles invariantes [d'après H. W. Lenstra]

  • Michel Kervaire
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 431)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. BURNSIDE-Theory of groups of finite order, Dover Publications, Inc. 1955.Google Scholar
  2. [2]
    C. CHEVALLEY-Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778–782.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. FISCHER-Die Isomorphie der Invariantenkörper der endlichen Abelschen Gruppen linearer Transformationen, Nachr. Königl. Ges. Wiss., Göttingen (1915), 77–80.Google Scholar
  4. [4]
    W. GASCHÜTZ-Fixörper von p-Automorphismengruppen rein transzendenter Körpererweiterungen von p-Charakteristik, Math. Zeitschrift, 71 (1959), 466–468.MATHCrossRefGoogle Scholar
  5. [5]
    H. W. LENSTRA-Rational functions invariant under a finite abelian group, Notes polycopiées, Amsterdam (1972).Google Scholar
  6. [6]
    G. C. SHERPHARD-J. A. TODD-Finite unitary reflection groups, Can. J. Math., 6 (1954), 274–304.Google Scholar
  7. [7]
    R. G. SWAN-Invariant rational functions and a problem of Steenrod, Invest. Math., 7 (1969), 148–158.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    V. E. VOSKRESENSKII-On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field Q(x1, ..., xn), Izv. Akad. Nauk SSSR, Ser. Mat., 34 (1970), 366–375. [English translation: Math. USSSR — Izv., 4 (1970), 371–380.]MATHMathSciNetGoogle Scholar
  9. [9]
    J. MARTINET-Un contre-exemple à une conjecture d'E. Noether (d'après R. Swan), Sém. Bourbaki no 372, 10 p., Lecture Notes in Math. 180, Springer-Verlag 1971.Google Scholar

Copyright information

© N. Bourbaki 1975

Authors and Affiliations

  • Michel Kervaire

There are no affiliations available

Personalised recommendations