Advertisement

Un théorème de finitude en K-théorie [d'après D. Quilien]

  • Lawrence Breen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 431)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    D. ANDERSON-Relationship among K-toeories, Seattle.Google Scholar
  2. [2]
    D. ANDERSON, M. KAROUBI, J. WAGONER-Relations between higher algebraic K-theories, Seattle.Google Scholar
  3. [3]
    H. BASS-K-theory and stable algebra, Publ. Math. I.H.E.S., no 22 (1964), 5–60.MATHMathSciNetGoogle Scholar
  4. [4]
    H. BASS-Algebraic K-theory, Benjamin, New York (1968).Google Scholar
  5. [5]
    A. BOREL-Cohomologie réelle stable des groupes S-arithmétiques classiques, C.R.Acad. Sci. Paris, t. 274 (1972), A 1700–A 1703.MathSciNetGoogle Scholar
  6. [6]
    A. BOREL et J.-P. SERRE-Adjonction de coins aux espaces symétriques; applications à la cohomologie des groupes arithmétiques, C.R.Acad. Sci. Paris, t. 271 (1970), A 1156–A 1158.MathSciNetGoogle Scholar
  7. [7]
    N. BOURBAKI-Groupes et algèbres de Lie, Chapitres IV, V et VI, Hermann 1968.Google Scholar
  8. [8]
    P. GABRIEL and M. ZISMAN-Calculus of fractions and homotopy theory, Ergebnisse der Math., New Series, Vol. 35, Springer-Verlag, New York (1967).Google Scholar
  9. [9]
    S. M. GERSTEN-Higher K-theory of rings, Seattle.Google Scholar
  10. [10]
    A. GROTHENDIECK-Revêtement étales et groupe fondamental, Séminaire de Géométrie Algébrique du Bois-Marie, 1960/61 (SGA 1), Lecture Notes in Maths, vol. 224 (1971), Springer-Verlag.Google Scholar
  11. [11]
    S. LICHTENBAUM-Values of zeta-functions, étale cohomology and algebraic K-theory, Seattle.Google Scholar
  12. [12]
    J. MILNOR-Introduction to algebraic K-theory, Annals of Math. Studies 72, Princeton University Press (1971).Google Scholar
  13. [13]
    D. QUILLEN-Homotopical algebra, Lecture Notes in Maths., vol. 43, Springer-Verlag (1967).Google Scholar
  14. [14]
    D. QUILLEN-Cohomology of groups, Actes, Congrès Intern. Math. Nice (1970), t. 2, 47–51.Google Scholar
  15. [15]
    D. QUILIEN-On the group completion of a simplicial monoïd, à paraître.Google Scholar
  16. [16]
    D. QUILLEN-Higher algebraic K-theory, I, Seattle.Google Scholar
  17. [17]
    D. QUILLEN-Finite generation of the groups Pi of rings of algebraic irtegers (notes rédigées par H. Bass), Seattle.Google Scholar
  18. [18]
    J.E. ROOS-Sur les foncteurs dérivés de lim, C.R.Acad. Sci. Paris, t. 252 (1961), A 3702–A 3704.MathSciNetGoogle Scholar
  19. [19]
    G. SEGAL-Classifying spaces and spectral sequences, Publ. Math. I.H.E.S., no 34 (1968).Google Scholar
  20. [20]
    J.-P. SERRE-Cohomologie des groupes discrets, dans "Prospects in Mathematics", Annals of Math. Studies 70, Princeton University Press, 1970.Google Scholar
  21. [21]
    L. SOLOMON-The Steinberg character of a finite group with BN-pair, dans Theory of finite groups (Symposium edited by R. Brauer and C.H. Sah), Benjamin, New York, 1969, 213–221.Google Scholar
  22. [22]
    R. G. SWAN-Algebraic K-theory, Actes, Congrès Intern. Math. Nice, 1970, t. 1, 191–199.Google Scholar
  23. [23]
    J. TITS-Structures et groupes de Weul, Sém. Bourbaki, 17e année, 1964/65, exp. no 288, Addison-Wesley/Benjamin, New York.Google Scholar

Copyright information

© N. Bourbaki 1975

Authors and Affiliations

  • Lawrence Breen

There are no affiliations available

Personalised recommendations