Advertisement

The numerical solution of the equations for rotating stars

  • J. F. G. Auchmuty
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 430)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auchmuty, J. F. G. and Beals, R., Models of Rotating Stars, Astrophysical J. 165, (1971), L79–82.CrossRefGoogle Scholar
  2. 2.
    Auchmuty, J. F. G. and Beals, R., Variational Solutions of some Nonlinear Free Boundary Problems, Arch. Rat. Mech. and Anal., 43, (1971) pp. 255–271.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chandrasekhar, S., Introduction to the Study of Stellar Structure, Chicago: Univ. of Chicago Press (1939).MATHGoogle Scholar
  4. 4.
    Anselone, P. M., Collectively Compact Operator Approximation Theory, Prentice-Hall (1971).Google Scholar
  5. 5.
    Daniel, J. W., The Approximate Minimization of Functionals, Prentice Hall (1971).Google Scholar
  6. 6.
    Daniel, J. W., Collectively Compact Sets of Gradient Mappings, Nederl. Akad. Wetensch. Proc. Ser. A, 71 (1968) 270–279.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Laurent, P. J., Approximation et Optimisation, Hermann Paris (1972).MATHGoogle Scholar
  8. 8.
    Ostriker, J. P. and Mark, J. W. K., Rapidly Rotating Stars I. The Self-Consistent Field Method, Astrophysical J., 151, (1968) 1075–1088.CrossRefGoogle Scholar
  9. 9.
    Papaloizou, J. C. B. and Whelan, J. A. J., The Structure of Rotating Stars: The J2 method and Results for Uniform Rotation, Mon. Not. R. Astr. Soc., 164, (1973) 1–10.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. F. G. Auchmuty
    • 1
  1. 1.Department of MathematicsIndiana UniversityBloomington

Personalised recommendations