The coloring numbers of the direct product of two hypergraphs

  • C. Berge
  • M. Simonovits
Part I: General Hypergraphs
Part of the Lecture Notes in Mathematics book series (LNM, volume 411)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berge, C., Graphes et Hypergraphes, Dunod, Paris 1970.MATHGoogle Scholar
  2. 2.
    Brown, W. G., On graphs which do not contain a Thomsen graph, Canad. Math. Bull. 9, 1966, 281–285.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chvátal, V., Hypergraphs and Ramseyian theorems, Thesis, Univ. of Waterloo, 1970.Google Scholar
  4. 4.
    Chvátal, V., On finite polarized partition relations, Canad. Math. Bull. 12, 1969, 321–326.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Čulik, K., Teilweise Losung eines verallgemeinerten Problems von K. Zarankiewicz, Ann. Polon. Math. 3, 1956, 165–168.MathSciNetMATHGoogle Scholar
  6. 6.
    Erdös, P., and Rado, R., A partition calculus in set theory, Bull. A.M.S. 62, 1956, 427–489.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Guy, R. K., A problem of Zarankiewicz in Theory of Graphs, Akadémiai Kiadó, Budapest, 1968, 119–150.Google Scholar
  8. 8.
    Guy, R. K., A many-facetted problem of Zarankiewicz, in The many Facets of Graph Theory, Lecture Notes 110, Springer Verlag, Berlin 1969, 129–148.CrossRefGoogle Scholar
  9. 9.
    Kövary, T., Sós, V., and Turán, P., On a problem of Zarankiewicz, Colloq. Math. 3, 1954, 50–57.MathSciNetMATHGoogle Scholar
  10. 10.
    Lovász, L., Minimax theorems for hypergraphs, in Hypergraph Seminar, Lecture Notes, Springer Verlag, Berlin 1974.Google Scholar
  11. 11.
    Sterboul, F., On the chromatic number of the direct product of two hypergraphs, this volume, p.173.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • C. Berge
    • 1
  • M. Simonovits
    • 2
  1. 1.University of Paris VIFrance
  2. 2.Eötvös L. UniversityBudapest

Personalised recommendations