Advertisement

Introduction to classification theory of algebraic varieties and compact complex spaces

  • Kenji Ueno
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 412)

Keywords

Complex Manifold Parabolic Type General Fibre Elliptic Surface Cartier Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Artin, M. Algebraization of formal moduli, II. Existence of modification, Ann. of Math., 91 (1970), 88–135.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Baily, W.L. On the moduli of Jacobian varieties, Ann. of Math., 71 (1960), 303–314.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Blanchard, A. Sur les variétés analytiques complexes, Ann. Ecole Norm. Sup., 73 (1956), 157–202.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Bombieri, E. Canonical models of surfaces of general type, Publ. Math. IHES., 42 (1973), 171–219.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Cartan, H. Quotient of complex analytic spaces. International colloquium on fuction theory, Tata Inst. Bombay (1960), 1–15.Google Scholar
  6. [6]
    Hironaka, H. Resolution of singularity of an algebraic variety of characteristic zero I, II, Ann. of Math. (1964), 109–326.Google Scholar
  7. [7]
    —. Bimeromorphic smoothing of a complex — analytic space. Preprint, University of Warwick (1970).Google Scholar
  8. [8]
    —. Review of S. Kawai’s paper, Math Review, 32, No. 11 (1966), 87–88.Google Scholar
  9. [9]
    Iitaka, S. Deformations of compact complex surfaces II, J.Math. Soc. Japan, 22 (1970), 247–261.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    . On D — dimensions of algebraic varieties, J. Math. Soc. Japan, 23 (1971), 356–373.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    —. Genera and classification of algebraic varieties I (in Japanese), Sugaku, 24 (1972), 14–27.MathSciNetGoogle Scholar
  12. [12]
    Inoue, M. On surfaces of class VII0, to appear in Invent. Math. (see also Proc. Japan Academy, 48 (1972), 445–446).CrossRefGoogle Scholar
  13. [13]
    Kawai, S. On compact complex analytic manifold of complex dimension 3, I, II, J. Math. Soc. Japan, 17 (1965), 438–442, ibid., 21 (1969), 604–616.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    —. Elliptic fibre spaces over compact surfaces, Comment, Math. Univ. St. Paul, 15 (1967), 119–138.MathSciNetzbMATHGoogle Scholar
  15. [15]
    Kobayashi, S. Hyperbolic manifolds and holomorphic mappings. Marcel Dekker, INC., New York (1970).zbMATHGoogle Scholar
  16. [16]
    Kobayashi, S. and T. Ochiai. Mapping into compact complex manifolds with negative first chern class, J. Math. Soc. Japan, 23 (1971), 137–148.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Kodaira, K. On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math., 60 (1954), 28–48.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    —. On compact analytic surfaces, I, II, III, Ann. of Math., 71 (1960), 111–152, ibid., 77 (1963), 563–626, ibid., 78(1963), 1–40.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    —. On the structure of compact complex analytic surfaces I, II, III, IV, Amer. J. Math., 86(1964), 751–798, ibid., 88 (1966), 682–721, ibid., 90 (1968), 1048–1066.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    —. Pluricanonical systems on algebraic surfaces of general type, J. Math. Soc. Japan, 20 (1968), 170–192.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Matsushima, Y. On Hodge manifold with zero first chern class, J. Diff. Geometry, 3 (1969), 477–480.MathSciNetzbMATHGoogle Scholar
  22. [22]
    Moishezon, B.G. On n — dimensional compact complex manifold with n algebraically independent meromorphic functions I, II, III, Amer, Math. Soc. Translation, 63 (1967), 51–177 (English translation).CrossRefzbMATHGoogle Scholar
  23. [23]
    Mumford, D. Geometric invariant theory. Springer Verlag, Berlin, Hiedelberg, New York (1965).CrossRefzbMATHGoogle Scholar
  24. [24]
    Nakamura, I. On classification of parallelizable manifolds and small deformations, to appear.Google Scholar
  25. [25]
    Nakamura, I. and K. Ueno. On addition formula for Kodaira dimensions of analytic fibre bundles whose fibres are Moishezon manifolds, J. Math. Soc. Japan, 25 (1973), 363–391.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Popp, H. On moduli of algebraic varieties II, to appear in Compositio Math., 28.Google Scholar
  27. [27]
    Remmert, R. Meromorphe Funktionen in kompakten komplexen Räumen, Math. Ann., 132 (1956), 277–288.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    —. Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328–370.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Šafarevič, I.R. et al. Algebraic surfaces, Proc. Steklov Inst. Moscow (1965).Google Scholar
  30. [30]
    Serre, J.P. Géometrie algebrique et géometrie analytique, Ann. Inst. Fourier, 6 (1956), 1–42.CrossRefzbMATHGoogle Scholar
  31. [31]
    Ueno, K. On fibre spaces of normally polarized abelian varieties of dimension 2, I, II, III, J. Fac. Sci. Univ. of Tokyo, Sec. IA, 18 (1971), 37–95, ibid., 19 (1972), 163–199, in preparation.MathSciNetzbMATHGoogle Scholar
  32. [32]
    —. Classification of algebraic varieties I, II. Compositiv Math., 27 (1973), 277–342, in preparation.MathSciNetzbMATHGoogle Scholar
  33. [33]
    —. Classification of algebraic varieties and compact complex spaces. Lecture Note, to appear.Google Scholar
  34. [34]
    —. On the pluricanonical systems of algebraic manifolds of dimension 3, to appear.Google Scholar
  35. [35]
    Weil, A. Variétés kählériennes, Hermann, Paris (1958).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Kenji Ueno

There are no affiliations available

Personalised recommendations