Hyperelliptic curves over number fields

  • Frans OORT
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 412)


Elliptic Curve Elliptic Curf Class Number Hyperelliptic Curve Weierstrass Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chowla, S., Proof of a conjecture of Julia Robinson. Norske Vid. Selsk.Forh. (Trondheim) 34 (1961), 100–101.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Fulton, W., Algebraic curves. Benjamin, 1969.Google Scholar
  3. [3]
    Hasse, H., Zahlentheorie. Akad. Verlag, Berlin, 1963.Google Scholar
  4. [4]
    Lang, S., Diophantine geometry. Intersc. Publ., 1962.Google Scholar
  5. [5]
    Ogg, A.P., Abelian curves of 2-power conductor. Proc. Camb. Phil. Soc. 62 (1966), 143–148.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Ogg, A. P., Abelian curves of small conductor. Journ. r. angew. Math. 226 (1967), 204–215.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Parshin, A.N., Quelques conjectures de finitude en gémétrie diophantienne. Actes, Congrès intern. math., 1970, 1, 467–471.Google Scholar
  8. [8]
    Parshin, A.N., Minimal models of curves of genus 2 and homomorphisms of abelian varieties defined over a field of finite characteristic. Izv. Akad. Nauk SSSR 36 (1972) (Math. USSR Izvestija, 6 (1972), 65–108).CrossRefzbMATHGoogle Scholar
  9. [9]
    Serre, J.-P., Cohomologie Galoisienne. Lect. N. Math. 5, Springer Verlag, 1964.Google Scholar
  10. [10]
    Serre, J.-P., Abelian l-adic representations and elliptic curves (McGill University lecture notes). Benjamin, 1968.Google Scholar
  11. [11]
    Shafarevich, I.R., Algebraic number fields. Proc. ICM, Stockholm 1962, 163–176 (Amer. Math. Soc. Translat. 31 (1963), 25–39).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Frans OORT
    • 1
  1. 1.Amsterdam

Personalised recommendations