Advertisement

Picard schemes of formal schemes; application to rings with discrete divisor class group

  • Joseph Lipman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 412)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. EGA01.
    A. GROTHENDIECK, J. DIEUDONNÉ, Éléments de Géométrie Algébrique: Springer-Verlag, Heidelberg, 1971.zbMATHGoogle Scholar
  2. __.
    I, II, III(0III), IV(0IV), Publ. Math. I.H.E.S. 4,8,...Google Scholar
  3. SGA2.
    A. GROTHENDIECK et. al., Séminaire de Géométrie Algébrique: Cohomologie locale des faisceaux cohérents..., North-Holland, Amsterdam, 1968.zbMATHGoogle Scholar
  4. SGA3.
    A. GROTHENDIECK et. al., Séminaire de Géométrie Algébrique: Schémas en groupes I, Lecture Notes in Mathematics no. 151, Springer-Verlag, Heidelberg, 1970.zbMATHGoogle Scholar
  5. SGA6.
    A. GROTHENDIECK et. al., Séminaire de Géométrie Algébrique: Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics no. 225, Springer-Verlag, Heidelberg, 1971.Google Scholar
  6. [AC]
    N. BOURBAKI, Algèbre Commutative, Hermann, Paris. (English Translation, 1972).zbMATHGoogle Scholar
  7. [B]
    J.-F. BOUTOT, Schéma de Picard local, C. R. Acad. Sc. Paris, 277 (Série A) (1973), 691–694.MathSciNetzbMATHGoogle Scholar
  8. [D1]
    V. I. DANILOV, On a conjecture of Samuel, Math. USSR Sb. 10 (1970), 127–137. (Mat. Sb. 81 (123) (1970), 132–144.)CrossRefzbMATHGoogle Scholar
  9. [D2]
    _____, Rings with a discrete group of divisor classes, Math. USSR Sb. 12 (1970), 368–386. (Mat. Sb. 83 (125) (1970), 372–389.)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [D3]
    _____, On rings with a discrete divisior class group, Math. USSR Sb. 17 (1972), 228–236. (Mat. Sb. 88 (130) (1972), 229–237.)CrossRefGoogle Scholar
  11. [DG]
    M. DEMAZURE, P. GABRIEL, Groupes Algébriques (Tome I), North-Holland, Amsterdam, 1970.zbMATHGoogle Scholar
  12. [F]
    R. M. FOSSUM, The divisor class group of a Krull domain, (Ergebnisse der Math., vol. 74), Springer-Verlag, Heidelberg, 1973.CrossRefzbMATHGoogle Scholar
  13. [GR]
    A. GROTHENDIECK, Groupe de Brauer III, in Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968.Google Scholar
  14. [K]
    W. KRULL, Beiträge zur Arithmetik kommutativer Integritätsbereiche V, Math. Z. 43 (1938), 768–782.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [L1]
    J. LIPMAN, Rational Singularities ..., Publ. Math. I.H.E.S. no. 36 (1969), 195–279.Google Scholar
  16. [L2]
    _____, The Picard group of a scheme over an Artin ring, to appear (preprint available).Google Scholar
  17. [P]
    D. PRILL, The divisor class groups of some rings of holomorphic functions, Math. Z. 121 (1971), 58–80.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [S1]
    P. SAMUEL, On unique factorization domains, Illinois J. Math. 5 (1961), 1–17.MathSciNetzbMATHGoogle Scholar
  19. [S2]
    _____, Sur les anneaux factoriels, Bull. Soc. Math. France 89 (1961), 155–173.MathSciNetzbMATHGoogle Scholar
  20. [SMN]
    P. SALMON, Su un problema posto da P. Samuel, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 40 (1966), 801–803.MathSciNetzbMATHGoogle Scholar
  21. [SH]
    G. SCHEJA, Einige Beispiele faktorieller lokaler Ringe, Math. Ann. 172 (1967), 124–134.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [SR]
    J.-P. SERRE, Corps locaux, Hermann, Paris, 1968.zbMATHGoogle Scholar
  23. [ST1]
    U. STORCH, Über die Divisorenklassengruppen normaler komplexanalytischer Algebren, Math. Ann. 183 (1969), 93–104.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [ST2]
    _____, Über das Verhalten der Divisorenklassengruppen normaler Algebren bei nicht-ausgearteten Erweiterungen, Habilitationsschrift, Univ. Bochum, (1971).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Joseph Lipman

There are no affiliations available

Personalised recommendations