A new variant of non-standard analysis

  • Elias Zakon
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 369)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Frayne, D. C. Morel and D. S. Scott, Reduced direct products, Fund. Math. 51(1962), 195–227.MathSciNetzbMATHGoogle Scholar
  2. 2.
    H. J. Keisler, A survey of ultraproducts, Logic, Methodology and Philosophy of Science, Proc. 1964 Intern. Congress, North Holland, Amsterdam, 1965, 112–124.Google Scholar
  3. 3.
    S. Kochen, Ultraproducts in the theory of models, Ann. Math. Ser. 2, 79 (1961), 221–261.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    W. A. J. Luxemburg (editor), Applications of Model Theory to Algebra, Analysis and Probability (Proc. Pasadena Symposium, 1967), Holt, Reinhart & Winston, New York, 1969.zbMATHGoogle Scholar
  5. 5.
    M. Machover and J. Hirschfeld, Lectures on Non-Standard Analysis, Springer Verlag, New York, 1969.CrossRefzbMATHGoogle Scholar
  6. 6.
    A. Robinson, Nonstandard Analysis, North Holland, Amsterdam, 1966.Google Scholar
  7. 7.
    Nonstandard theory of Dedekind rings, Proc. Neth. Acad. Sci., Amsterdam A 70(1967), 442–452.Google Scholar
  8. 8.
    A. Robinson and E. Zakon, A set theoretical characterization of enlargements, Proc. Pasadena Symposium (cf. [4]), 109–122.Google Scholar
  9. 9.
    P. Suppes, Axiomatic Set Theory, Van Nostrand, New York, 1965.zbMATHGoogle Scholar
  10. 10.
    E. Zakon, Remarks on the nonstandard real axis, [4], 195–227.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Elias Zakon
    • 1
  1. 1.University of WindsorCanada

Personalised recommendations