Two topologies with the same monads

  • Frank Wattenberg
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 369)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell and Slomson, Models and Ultraproducts, North-Holland, Amsterdam (1969).zbMATHGoogle Scholar
  2. 2.
    A. Bernstein, A New Kind of Compactness for Topological Spaces.Google Scholar
  3. 3.
    A. Bernstein and F. Wattenberg, Nonstandard Topology in Countable Ultrapowers and the Baire Property, these Proceedings.Google Scholar
  4. 4.
    A. Blass, Orderings of Ultrafilters, Thesis, Harvard University (1970).Google Scholar
  5. 5.
    _____, The Rudin-Keisler Ordering of P-points, to appear.Google Scholar
  6. 6.
    D. Booth, Ultrafilters on a Countable Set, Ann. Math. Logic, 2 (1970) pp. 1–24.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    G. Choquet, Construction d’Ultrafiltres sur N, Bull. Sci. Math. 92 (1968) pp. 41–48.MathSciNetzbMATHGoogle Scholar
  8. 8.
    _____, Deux Classes Remarquables d’Ultrafiltres sur N, Bull. Sci. Math. 92 (1968) 143–153.MathSciNetzbMATHGoogle Scholar
  9. 9.
    S. Kakutani and V. Klee, The Finite Topology of a Linear Space, Arch. Math. 14 (1963) pp. 55–58.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    W. A. J. Luxemburg, A New Approach to the Theory of Monads, California Institute of Technology, Pasadena (1967).Google Scholar
  11. 11.
    _____, (editor), Applications of Model Theory to Algebra, Analysis and Probability, Holt, Rinehart and Winston, New York (1969).zbMATHGoogle Scholar
  12. 12.
    M. Machover and J. Hirschfeld, Lectures on Non-Standard Analysis, Lecture Notes in Mathematics 94, Springer, Berlin (1969).zbMATHGoogle Scholar
  13. 13.
    A. Robinson, Non-Standard Analysis, North-Holland, Amsterdam (1966)zbMATHGoogle Scholar
  14. 14.
    _____, Nonstandard Arithmetic, Bull. Amer. Math. Soc. 73 (1967) pp. 818–843.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    M. Rudin, Types of Ultrafilters, Topology Seminar, Wisconsin: Edited by R. H. Bing and R. J. Bean, Princeton University Press, Princeton (1966).Google Scholar
  16. 16.
    W. Rudin, Homogeneity Problems in the Theory of Cech Compactifications, Duke Math. J. 23 No. 3 pp. 409–420.Google Scholar
  17. 17.
    F. Wattenberg, Nonstandard Topology and Extensions of Monad Systems to Infinite Points, J. Sym. Logic, 36 (1971), pp. 463–476.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    ____, Monads of Infinite Points and Finite Product Spaces, to appear in Trans. AMS.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Frank Wattenberg
    • 1
  1. 1.University of MassachusettsAmherst

Personalised recommendations