Semi-reflexivity of the nonstandard hulls of a locally convex space

  • C. Ward Henson
  • L. C. MooreJr.
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 369)


Local Base Finite Subset Nonstandard Hull Admissible Topology Small Cardinal Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henson, C. Ward and L. C. Moore, Jr., The nonstandard theory of topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), 405–435.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    James, Robert C., Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101–119.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    _____, Some self-dual properties of normed linear spaces, Symposium on Infinite Dimensional Topology, Annals of Math. Studies 69(1972), 159–175.Google Scholar
  4. 4.
    _____, Super-reflexive spaces with bases, Pacific J. Math. 41 (1972), 409–419.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    _____, Super-reflexive Banach spaces, Canad. J. Math. 24(1972), 896–904.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    _____, and J. J. Schäffer, Super-reflexivity and the girth of spheres, Israel J. Math. 11(1972), 398–404.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Luxemburg, W. A. J., A general theory of monads, in Applications of Model Theory (W. A. J. Luxemburg, editor), Holt, Rinehart and Winston (New York, 1969), 18–86.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • C. Ward Henson
    • 1
  • L. C. MooreJr.
    • 1
  1. 1.Duke UniversityUSA

Personalised recommendations