Advertisement

Towards a nonstandard analysis of programs

  • M. M. Richter
  • M. E. Szabo
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 983)

Keywords

Iteration Variable Register Program Procedure Variable Sequent Calculus Nonstandard Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  1. H. ANDRÉKA, I. NÉMETI, and I. SAIN (1980), Nonstandard runs of Floyd-provable programs, Proceedings of the Symposium on Algorithmic Logic, A. Salwicki (editor), Lecture Notes in Computer Science, Springer-Verlag, to appear.Google Scholar
  2. L. CZIRMAZ (1981), Completeness of Floyd-Hoare program verification, Theoretical Computer Science, 2, pp. 199–211.CrossRefGoogle Scholar
  3. C. A. R. HOARE (1969), An axiomatic basis for computer programming, Communications of the Association for Computing Machinery, 12, pp. 576–580, 583.CrossRefzbMATHGoogle Scholar
  4. C. A. R. HOARE (1971), Procedures and parameters: An axiomatic approach, Symposium on Semantics of Programming Languages, E. Engeler (editor), Lecture Notes in Mathematics, 188, Springer-Verlag, New York, pp. 102–116.Google Scholar
  5. F. KRÖGER (1976), Logical rules of natural reasoning about programs, Automata, Languages, and Programming, S. Michaelson and R. Milner (editors), Edinburgh University Press, Edinburgh, pp. 87–98.Google Scholar
  6. F. KRÖGER (1977), LAR: A logic for algorithmic reasoning, Acta Informatica, 8, pp. 242–266.MathSciNetCrossRefzbMATHGoogle Scholar
  7. E. NELSON (1977), Internal set theory, Bulletin of the American Mathematical Society, 83, pp. 1165–1198.MathSciNetCrossRefzbMATHGoogle Scholar
  8. M. M. RICHTER (1981), Monaden, ideale Punkte und Nichtstandard-Methoden, Vieweg-Verlag, 1981.Google Scholar
  9. D. SCOTT and C. STRACHEY (1971), Towards a mathematical semantics for computer languages, Technical Monographs PRG-6, Oxford University Computing Laboratory, Programming Research Group.Google Scholar
  10. D. SCOTT (1974), Data types as lattices, Proceedings of the International Summer Institute and Logic Colloquium, Kiel 1974, G. H. Müller, A. Oberschelp, and K. Pothoff (editors), Lecture Notes in Mathematics, 499, pp. 579–651.MathSciNetCrossRefGoogle Scholar
  11. M. E. SZABO (1980), A sequent calculus for Kröger logic, Proceedings of the Symposium on Algorithmic Logic, A. Salwicki (editor), Lecture Notes in Computer Science, Springer-Verlag, to appear.Google Scholar
  12. M. E. SZABO (1981), Variable truth, to appear.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. M. Richter
    • 1
  • M. E. Szabo
    • 2
  1. 1.Lehrstuhl für angewandte Mathematik Technische HochschuleAachen
  2. 2.Department of MathematicsConcordia UniversityMontreal

Personalised recommendations