Advertisement

Stochastic processes and nonstandard analysis

  • Edwin Perkins
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 983)

Keywords

Brownian Motion Stochastic Differential Equation Sample Path Internal Process Standard Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Anderson: A non-standard representation for Brownian motion and Itô integration. Israel J. Math. 25, 15–46 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R.M. Anderson and S. Rashid: A non-standard characterization of weak convergence. Proc. Amer. Math. Soc. 69, 327–332 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M.T. Barlow: One dimensional stochastic differential equations with no strong solution, preprint.Google Scholar
  4. 4.
    P. Billingsley: Convergence of probability measures. New York: John Wiley 1968.zbMATHGoogle Scholar
  5. 5.
    D.L. Burkholder, B.J. Davis, and R.F. Gundy: Integral inequalities for convex functions of operators on martingales. Proc. 6th Berkeley Symp. 2, 223–240 (1972).MathSciNetzbMATHGoogle Scholar
  6. 6.
    N.J. Cutland: On the existence of strong solutions to stochastic differential equations on Loeb spaces, preprint.Google Scholar
  7. 7.
    C. Doléans-Dade: Variation quadratique des martingales continues à droite. Ann. Math. Statist. 40, 284–289 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C. Doléans-Dade: On the existence and unicity of solutions of stochastic integral equations. Z. Wahrscheinlichkeitstheorie verw. Geb. 34, 93–101 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J.L. Doob: Stochastic processes. New York: John Wiley 1953.zbMATHGoogle Scholar
  10. 10.
    D.H. Hoover and H.J. Keisler: Adapted probability distributions, preprint.Google Scholar
  11. 11.
    D.H. Hoover and E.A. Perkins: Nonstandard construction of the stochastic integral and applications to stochastic differential equations I, to appear in Trans. Amer. Math. Soc.Google Scholar
  12. 12.
    D.H. Hoover and E.A. Perkins: Nonstandard construction of the stochastic integral and applications to stochastic differential equations II, to appear in Trans. Amer. Math. Soc.Google Scholar
  13. 13.
    J. Jacod and J. Memin: Existence of weak solutions for stochastic differential equations with driving semimartingales. Stochastics 4, 317–337 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H.J. Keisler: An infinitesimal approach to stochastic analysis, to appear as a Memoir of Amer. Math. Soc.Google Scholar
  15. 15.
    J.F.C. Kingman: An intrinsic description of local time. J. London Math. Soc. (2) 6, 725–731 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    N.V. Krylov: Some estimates of the probability density of a stochastic integral. Mathematics of the USSR-Izvestia 8, 233–254 (1974).CrossRefzbMATHGoogle Scholar
  17. 17.
    T.L. Lindstrøm: Hyperfinite stochastic integration I: The nonstandard theory. Math. Scand. 46, 265–292 (1980).MathSciNetzbMATHGoogle Scholar
  18. 18.
    T.L. Lindstrøm: Hyperfinite stochastic integration II: Comparison with the standard theory. Math. Scand. 46, 293–314 (1980).MathSciNetzbMATHGoogle Scholar
  19. 19.
    T.L. Lindstrøm: Hyperfinite stochastic integration III: Hyperfinite representations of standard martingales. Math. Scand. 46, 315–331 (1980).MathSciNetzbMATHGoogle Scholar
  20. 20.
    T.L. Lindstrøm: The structure of hyperfinite stochastic integrals, preprint.Google Scholar
  21. 21.
    P.A. Loeb: Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc. 211, 113–122 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    P.A. Loeb: An introduction to nonstandard analysis and hyperfinite probability theory. Probabilistic Analysis and Related Topics. A. Barucha-Reid Ed., New York: Acad. Press 1979.Google Scholar
  23. 23.
    H.P. McKean: Stochastic Integrals. New York: Academic Press 1969.zbMATHGoogle Scholar
  24. 24.
    P.A. Meyer: Un cours sur les intégrales stochastiques. Séminaire de Probabilités X, 245–400. Lect. Notes in Math. 511. Berlin-Heidelberg-New York: Springer 1976.Google Scholar
  25. 25.
    E.A. Perkins: A global intrinsic characterization of Brownian local time. Ann. Probability 9, 800–817 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    E.A. Perkins: Weak invariance principles for local time, to appear in Z. Wahrscheinlichkeitstheorie verw. Geb.Google Scholar
  27. 27.
    E. A. Perkins: The exact Hausdorff measure of the level sets of Brownian motion, to appear in Z. Wahrscheinlichkeitstheorie verw. Geb.Google Scholar
  28. 28.
    Ph.E. Protter: On the existence, uniqueness, convergence and explosions of solutions of systems of stochastic integral equations. Ann. Probability 5, 243–261 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ph.E. Protter: Right-continuous solutions of systems of stochastic integral equations. J. Multivariate Anal. 7, 204–214 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A.V. Skorohod: Studies in the Theory of Random Processes. Reading: Addison-Wesley 1965.Google Scholar
  31. 31.
    C.J. Stone: Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc. 14, 694–696 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    K.D. Stroyan and J.M. Bayod: Foundations of Infinitesimal Stochastic Analysis, forthcoming book.Google Scholar
  33. 33.
    K.D. Stroyan and W.A.J. Luxemburg: Introduction to the Theory of Infinitesimals. New York: Academic Press 1976.zbMATHGoogle Scholar
  34. 34.
    S.J. Taylor and J.G. Wendel: The exact Hausdorff measure of the zero set of a stable process. Z. Wahrscheinlichkeitstheorie verw. Geb. 6, 170–180 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    H.F. Trotter: A property of Brownian motion paths. Illinois J. Math. 2, 425–433 (1958).MathSciNetzbMATHGoogle Scholar
  36. 36.
    D. Williams: Diffusions, Markov Processes and Martingales. Chichester: John Wiley 1979.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Edwin Perkins
    • 1
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations