Stochastic integration in hyperfinite dimensional linear spaces

  • Tom L. Lindstrøm
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 983)


Hilbert Space Brownian Motion Gaussian Measure Continuous Semigroup Infinitesimal Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 0.
    R.M. Anderson: A Nonstandard Representation of Brownian Motion and Itô Integration. Israel J. Math. 25 (1976) pp. 15–46.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 1.
    R.M. Anderson: Star-finite Probability Theory. Ph.D.-thesis, Yale University, 1977.Google Scholar
  3. 2.
    A. Bensoussan and R. Teman: Equation aux Derivées Partielles Stochastiques, Israel J. Math. 11 (1972)Google Scholar
  4. 3.
    A. Chojnowska-Michalik: Stochastic Differential Equations in Hilbert Spaces, in Z. Ciesielski (ed): Probability Theory. Banach Center Publications, Vol. 5, PWN, 1979.Google Scholar
  5. 4.
    P.-L. Chow: Stochastic Partial Differential Equations in Turbulence Related Problems, in A.T. Bharucha-Reid (ed): Probabilistic Analysis and Related Topics 1, Academic Press 1978Google Scholar
  6. 5.
    L. Gross: Abstract Wiener Spaces, Proc. 5th. Berkeley Sym. Math. Stat. Prob. 2 (1965), pp 31–42.Google Scholar
  7. 6.
    H.J. Keisler: An Infinitesimal Approach to Stochastic Analysis, Preliminary Version, 1978. (To app. Mem. AMS)Google Scholar
  8. 7.
    H.-H. Kuo: Gaussian Measures in Banach Spaces, LNM 463, Springer-Verlag, 1975.Google Scholar
  9. 8.
    T.L. Lindstrøm: Hyperfinite Stochastic Integration I: The Nonstandard Theory. Math. Scand. 46, pp265–292.Google Scholar
  10. 9.
    T.L. Lindstrøm: Hyperfinite Stochastic Integration II: Comparison with the Standard Theory. Math. Scand. 46, pp293–324.Google Scholar
  11. 10.
    T.L. Lindstrøm: Hyperfinite Stochastic Integration III: Hyperfinite Representations of Standard Martingales. Math. Scand. 46 (1980), pp 315–332.MathSciNetzbMATHGoogle Scholar
  12. 11.
    T.L. Lindstrøm: A Loeb-measure Approach to Theorems by Prohorov, Sazonov, and Gross. Trans AMS 269 (1982).Google Scholar
  13. 12.
    P.A. Loeb: An Introduction to Nonstandard Analysis and Hyperfinite Probability Theory, in A.T. Bharucha-Reid (ed): Probabilistic Analysis and Related Topics 2, Academic Press, 1979, pp 105–142.Google Scholar
  14. 13.
    E. Pardoux: Equations aux derivées partielles stochastiques monotones, C.R. Acad. Sci. Paris, Ser. A, 275(1972).Google Scholar
  15. 14.
    M. Reed and B. Simon: Methods of Modern Mathematical Physics II, Academic Press, 1975.Google Scholar
  16. 15.
    K.D. Stroyan and W.A.J. Luxemburg: Introduction to the Theory of Infinitesimals, Academic Press, 1976.Google Scholar
  17. 16.
    D.N. Hoover and E.A. Perkins: Nonstandard Construction of the Stochastic Integral and Applications to Stochastic Differential Equations, I–II, To appear Trans. AMS.Google Scholar
  18. 17.
    T.L. Lindstrøm: The Structure of Hyperfinite Stochastic Integrals. To appear Zeit. f. Wahr. Theorie.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Tom L. Lindstrøm
    • 1
  1. 1.University of OsloNorway

Personalised recommendations