Hyperfinite spin models

  • L. L. Helms
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 983)


Nonstandard Analysis Transfer Principle Martingale Problem Internal Measure Real Continuous Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Anderson and S. Rashid, A nonstandard characterization of weak convergence. Proc. Amer. Math. Soc., 69(1978), 327–332.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. L. Doob, Stochastic Processes, Wiley, New York, 1953.zbMATHGoogle Scholar
  3. 3.
    L. Helms, Ergodic properties of several interacting Poisson particles, Adv. in Math., 12(1974), 32–57.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    L. Helms and P. A. Loeb, Applications of nonstandard analysis to spin models. Jour. of Math. Analysis and Applic., 69(1979), 341–352.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    T. M. Liggett, Existence theorems for infinite particle systems, Trans. Amer. Math. Soc., 165(1972), 471–481.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P. A. Loeb, An Introduction to Nonstandard Analysis and Hyperfinite Probability Theory, in Probabilistic Analysis and Related Topics, A. T. Bharucha-Reid, Ed., Vol. 2, pp. 105–141, Academic Press, 1969.Google Scholar
  7. 7.
    D. W. Müller, Nonstandard proofs of invariance principles in probability theory, in Applications of Model Theory to Algebra, Analysis, and Probability, W. A. J. Luxemburg, ed., pp. 186–194, Holt, Rinehart and Winston, 1969.Google Scholar
  8. 8.
    K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967.CrossRefzbMATHGoogle Scholar
  9. 9.
    C. J. Stone, Weak convergence of stochastic processes defined on semi-infinite time intervals, Proc. Amer. Math. Soc., 14(1963), 694–696.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    D. W. Stroock, Lectures on Infinite Interacting Systems, Kyoto University, Kinokuniya Book-Store Co., Ltd., Tokyo, 1978.zbMATHGoogle Scholar
  11. 11.
    K. D. Stroyan and W. A. J. Luxemburg, Introduction to the Theory of Infinitesimals, Academic Press, New York, 1976.zbMATHGoogle Scholar
  12. 12.
    V. A. Volkonskii, Random substitution of time in strong Markov processes, Theory Prob. Appl., 3(1958), 310–325.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • L. L. Helms
    • 1
  1. 1.University of IllinoisUrbana

Personalised recommendations