On zeta-functions of rankin type associated with siegel modular forms

  • A. N. Andrianov
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 627)


Modular Form Fourier Coefficient Formal Power Series Eisenstein Series Cusp Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Séminaire H. Cartan 1957/58, Fonctions automorphes, Secrétariat mathématique, Paris, 1958.Google Scholar
  2. [2]
    A.N. Andrianov, G.N. Maloletkin, Behavior of theta series of degree n under modular substitutions, Math. USSR Izvestija Vol.9 (1975), No 2, 227–241.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math., IHES No 18 (1963).Google Scholar
  4. [4]
    A.N. Andrianov, Euler products associated with the Siegel modular forms of genus 2, Uspehi Mat. Nauk., vol. 29 No 3 (1974), 43–110.MathSciNetGoogle Scholar
  5. [5]
    R.A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions, II, Proc. Cambridge Philos. Soc. 35 (1939), 357–372.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., 31, No 1 (1975), 79–98.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A.N. Andrianov, Symmetric squares of zeta-functions of Siegel's modular forms of genus 2, Trudy Mat. Inst. Steklov, 142 (1976), 22–45.MathSciNetGoogle Scholar
  8. [8]
    H. Maass, Dirichletsche Reihen und Modulformen zweiten Grades, Acta Arithmetica, 24 (1973), 225–238.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. N. Andrianov
    • 1
  1. 1.The Leningrad Branch of the Steklov Mathematical InstituteRussia

Personalised recommendations