Advertisement

The ring of hilbert modular forms for real quadratic fields of small discriminant

  • F. Hirzebruch
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 627)

Keywords

Singular Point Modular Form Double Cover Eisenstein Series Cusp Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. BRIESKORN, Rationale Singularitäten komplexer Flächen. Invent. Math. 4, 336–358 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G.B.M. VAN DER GEER, On Hilbert modular surfaces of principal congruence subgroups. Dissertation, Rijksuniversiteit te Leiden, 1977.Google Scholar
  3. [3]
    K.-B. GUNDLACH, Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers Q(√5). Math. Ann. 152, 226–256 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K.-B. GUNDLACH, Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen. Journal f.d.r.u.a. Math. 220, 109–153 (1965).MathSciNetzbMATHGoogle Scholar
  5. [5]
    K.-B. GUNDLACH, Some new results in the theory of Hilbert's modular group. “Contributions to function theory”, Tata Institute, pp. 165–180, Bombay (1960).Google Scholar
  6. [6]
    F. HIRZEBRUCH, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen. Math. Ann. 126, 1–22 (1953).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F. HIRZEBRUCH, Hilbert modular surfaces. L'Enseignement Math. 19, 183–281 (1973).MathSciNetzbMATHGoogle Scholar
  8. [8]
    F. HIRZEBRUCH, Hilbert's modular group of the field Q(√5) and the cubic diagonal surface of Clebsch and Klein. Russian Math. Surveys 31:5, 96–110 (1976), from Uspekki Mat. Nauk 31:5, 153–166 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    F. HIRZEBRUCH and A. VAN DE VEN, Hilbert modular surfaces and the classification of algebraic surfaces. Invent. Math. 23, 1–29 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    F. HIRZEBRUCH and D. ZAGIER, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math. 36, 57–113 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    F. HIRZEBRUCH and D. ZAGIER, Classification of Hilbert modular surfaces. “Complex Analysis and Algebraic Geometry”, Iwanami Shoten und Cambridge Univ. Press 1977, p. 43–77.Google Scholar
  12. [12]
    U. KARRAS, Eigenschaften der lokalen Ringe in zweidimensionalen Spitzen, Math. Ann. 215, 117–129 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    U. KARRAS, Klassifikation 2-dimensionaler Singularitäten mit auflösbaren lokalen Fundamentalgruppen. Math. Ann. 213, 231–255 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    F. KLEIN, Weitere Untersuchungen über das Ikosaeder. Gesammelte mathematische Abhandlungen Bd. II, Springer-Verlag, Berlin 1922 (Reprint 1973), pp. 321–380 (Math. Ann. 12, (1877)), see in particular pp. 339, 347, 354.Google Scholar
  15. [15]
    H. LAUFER, Taut two-dimensional singularities, Math. Ann. 205, 131–164 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H.L. RESNIKOFF, On the graded ring of Hilbert modular forms associated with Q(√5), Math. Ann. 208, 161–170 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. SHIMIZU, On discontinuous groups operating on the product of upper half planes, Ann. of Math. 77, 33–71 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    H. WEBER, Lehrbuch der Algebra, 2. Aufl. Bd. II, Friedrich Vieweg & Sohn, Braunschweig 1899.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • F. Hirzebruch

There are no affiliations available

Personalised recommendations