Theta functions over Q and over Q(√q)

  • M. Eichler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 627)


Modular Form Theta Function Clifford Algebra Cusp Form Maximal Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    COHEN H., Formes modulaires à une et deux variables, Thèse 1976, Université de Bordeaux IGoogle Scholar
  2. [2]
    EICHLER M., Quadratische Formen und orthogonale Gruppen, 2. Aufl. Springer Verlag, Berlin-Heidelberg-New York 1974.CrossRefzbMATHGoogle Scholar
  3. [3]
    EICHLER M., Zur Zahlentheorie der Quaternionen-Algebren, Journal reine und angew. Math. 195 (1956), 127–151.MathSciNetGoogle Scholar
  4. [4]
    EICHLER M., Quadratische Formen und Modulfunktionen, Acta Arithmetica 4 (1958), 217–239.MathSciNetGoogle Scholar
  5. [5]
    EICHLER M., The basis problem for modular forms and the traces of Hecke operators, in Modular Forms of One Variable I, Lecture Notes in Mathematics nr. 320, Springer Verlag, Berlin-Heidelberg-New York 1973.Google Scholar
  6. [6]
    EICHLER M., On theta functions in real algebraic number fields, to appear in Acta Arithmetica.Google Scholar
  7. [7]
    HIJIKATA H. and SAITO H., On the representability of modular forms by theta series, p. 13–21 in Number Theory, Algebraic Geometry, and Commutative Algebra, a volume published in honor of Y. Akizuki, Kinokuniya, Tokyo 1973.Google Scholar
  8. [8]
    NAGANUMA H., On the coincidence of two Dirichlet series associated with cusp forms of Hecke's “nebentype” and Hilbert modular forms over real quadratic fields, Journ. Math. Soc. Japan (4) 25 (1973), 547–555.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    PETERS M., Ternäre und quaternäre quadratische Formen und Quaternionenalgebren, Acta Arithmetica 15 (1969), 319–365.MathSciNetzbMATHGoogle Scholar
  10. [10]
    SAITO H., Automorphic forms and algebraic extensions of number fields, Lecture Note in Mathematics nr. 8, Kyoto Univ. 1975.Google Scholar
  11. [11]
    SHIMIZU H., On traces of Hecke operators, Journ. Fac. Sci. Univ. Tokyo 10 (1963), 1–19.MathSciNetzbMATHGoogle Scholar
  12. [12]
    ZAGIER D., Modular forms associated to real quadratic fields, Inventiones Math. 30 (1975), 1–46.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    O'MEARA O.T., Introduction to Quadratic Forms, Springer Verlag, Berlin-Heidelberg-New York, 1963.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M. Eichler

There are no affiliations available

Personalised recommendations