Advertisement

A lifting of modular forms in one variable to hilbert modular forms in two variables

  • Henri Cohen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 627)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    H. COHEN, Variations sur un thème de Siegel et Hecke, Acta Arith., 30, (1976), p. 63–93.MathSciNetzbMATHGoogle Scholar
  2. [2]
    H. COHEN, Sums involving the values at negative integers of L functions of quadratic characters, Math. Ann. 217, (1975), p. 271–285.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. COHEN, Formes modulaires à deux variables associées à une forme à une variable, C. R. Acad. Sci. Paris, 281, (1975), p. 753–755.MathSciNetzbMATHGoogle Scholar
  4. [4]
    H. COHEN, Formes modulaires à une et deux variables, Thèse, Université de Bordeaux I (1976).Google Scholar
  5. [5]
    K. DOI and H. NAGANUMA, On the functional equation of certain Dirichlet series, Invent. Math. 9, (1969), p. 1–14.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. KUDLA, Theta functions and Hilbert modular forms, to appear.Google Scholar
  7. [7]
    H. NAGANUMA, On the coincidence of two Dirichlet series associated with cusp forms of Hecke's Neben-type and Hilbert modular forms over a real quadratic field, J. Math. Soc. Japan, 25, (1973), p. 547–555.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. NIWA, Modular forms of half integral weight and the integral of certain theta functions, Nagoya Math. J. 56, (1974), p. 147–161.MathSciNetzbMATHGoogle Scholar
  9. [9]
    H. SAITO, Algebraic extensions of number fields and automorphic forms, Kyoto Univ. Lectures in Math. 8, Tokyo: Kinokuniya (1973).Google Scholar
  10. [10]
    B. SCHOENEBERG, Elliptic modular functions, Springer Verlag, (1974).Google Scholar
  11. [11]
    G. SHIMURA, Modular forms of half integral weight, Ann. of Math. 97 (1973), p. 440–481.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    L. W. VASERŠTEIN, On the group SL2 over Dedeking rings of arithmetic type, Mat. Sbornik 89 (1972) = Math. USSR Sbornik 18, (1972), p. 321–332.CrossRefGoogle Scholar
  13. [13]
    D. ZAGIER, Modular forms associated to real quadratic fields, Invent. Math. 30, (1975), p. 1–46.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Henri Cohen
    • 1
  1. 1.Laboratoire de Mathématiques et d'Informatique dépendant del'Université de Bordeaux I associé au C. N. R. S.Talence Cedex

Personalised recommendations