Modular forms whose fourier coefficients involve zeta-functions of quadratic fields

  • D. Zagier
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 627)


Zeta Function Modular Form Fourier Coefficient Eisenstein Series Cusp Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Asai, On the Fourier coefficients of automorphic forms at various cusps and some applications to Rankin's convolution, J. Math. Soc. Japan 28 (1976) 48–61MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    T. Asai, On certain Dirichlet series associated with Hilbert modular forms and Rankin's method, Math. Ann. 226 (1977) 81–94.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. Cohen, Sums involving the values at negative integers of L functions of quadratic characters, Math. Ann. 217 (1975) 271–285.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K. Doi, H. Naganuma, On the functional equation of certain Dirichlet series, Inv. Math. 9 (1969) 1–14MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, Vol. I, Mc Graw-Hill, New York-Toronto-London 1953.zbMATHGoogle Scholar
  6. [6]
    R. Gunning, Lectures on Modular Forms, Ann. of Math. Studies No. 48, Princeton Univ. Press, Princeton 1962.CrossRefzbMATHGoogle Scholar
  7. [7]
    F. Hirzebruch, Kurven auf den Hilbertschen Modulflächen und Klassenzahl-relationen, in Classification of algebraic varieties and compact complex manifolds, Springer Lecture Notes No. 412, pp. 75–93.Google Scholar
  8. [8]
    F. Hirzebruch, D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Inv. Math. 36 (1976) 57–113MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Hurwitz, Über Relationen zwischen Klassenzahlen binärer quadratischer Formen von negativer Determinante, Math. Ann. 25 (1885). Math. Werke, Bd. II, pp. 8–50, Birkhäuser, Basel-Stuttgart 1963Google Scholar
  10. [10]
    E. Landau, Vorlesungen über Zahlentheorie (Aus der elementaren Zahlentheorie), Hirzel, Leipzig 1927.zbMATHGoogle Scholar
  11. [11]
    S. Lang, Introduction to Modular Forms, Grundlehren der mathematischen Wissenschaften 222, Springer-Verlag, Berlin-Heidelberg-New York 1976zbMATHGoogle Scholar
  12. [12]
    D.H. Lehmer, Ramanujan's function τ(n), Duke Math. J. 10 (1943) 483–492.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    W. Li, New forms and functional equations, Math. Ann 212 (1975) 285–315.MathSciNetCrossRefGoogle Scholar
  14. [14]
    H. Naganuma, On the coincidence of two Dirichlet series associated with cusp forms of Hecke's “Neben”-type and Hilbert modular forms over a real quadratic field, J. Math. Soc. Japan 25 (1973) 547–555.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Oda, On modular forms associated with indefinite quadratic forms of signature (2, n-2), Math. Ann., to appearGoogle Scholar
  16. [16]
    H. Petersson, Über eine Metrisierung der ganzen Modulformen, Jahresb. d. Deutschen Math. Verein. 49 (1939) 49–75.zbMATHGoogle Scholar
  17. [17]
    R. A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithetical functions, I, Proc. Camb. Phil. Soc. 35 (1939) 351–372.MathSciNetCrossRefGoogle Scholar
  18. [18]
    R.A. Rankin, The scalar product of modular forms, Proc. London Math. Soc. 2 (1952) 198–217MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J-P. Serre, Une interprétation des congruences relatives à la fonction τ de Ramanujan, Séminaire Delange-Pisot-Poitou, 9e année, 1967/8, no 14Google Scholar
  20. [20]
    G. Shimura, On modular forms of half integral weight, Ann of Math. 97 (1973) 440–481MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    G. Shimura, On the holomorphy of certain Dirichlet series, Proc. Lond. Math. Soc. 31 (1975) 79–98MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. on Pure and Applied Math. 29 (1976) 783–804MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D. Zagier, On the values at negative integers of the zeta-function of a real quadratic field, L'Ens. Math. 22 (1976) 55–95.MathSciNetzbMATHGoogle Scholar
  24. [24]
    D. Zagier, Modular forms associated to real quadratic fields, Inv. Math. 30 (1975) 1–46MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    D. Zagier, Traces des opérateurs de Hecke, Séminaire Delange-Pisot-Poitou, 17e année, 1975/6, no 23; = The Eichler-Selberg trace formula on SL2(Z), Appendix to Part I of [11], pp. 44–54.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • D. Zagier

There are no affiliations available

Personalised recommendations