Facteurs gamma et équations fonctionnelles

  • M.-F. Vignéras
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 627)


Modular Form Series Theta Half Integral Weight Condition Suivante Premiere Partie 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. BOCHNER. On Riemann's functional equation with multiple gamma factors. Ann. of Math. 67 (1958), 29–41.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. BOCHNER and K. CHANDRASEKHARAN. On Riemann's functional equation. Ann. of Math. 63 (1956), 336–360.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Z.I. BOREVITCH et I.R. CHAFAREVITCH. Théorie des nombres. Gauthier-Villars (1967).Google Scholar
  4. [4]
    H. HAMBURGER. Über die Riemannsche Funktionalgleichung der ζ-Funktion. Math. Zeit. 10 (1921), 240–254.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. LEVINSON. Gap and density Theorems. Amer. Math. Soc. Coll. Publ. 26 (1940).Google Scholar
  6. [6]
    J.-P. SERRE and H. STARK. Modular forms of weight ½. Ce volume.Google Scholar
  7. [7]
    G. SHIMURA. On modular forms of half integral weight. Ann. of Math. 97 (1973), 440–481.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    C.L. SIEGEL. Bemerkungen zu einem Satz von Hamburger über die Funktionalgleichung der Riemannschen Zetafunktion. Gesammelte Abhandlungen. Springer-Verlag (1966), Band I, 154–156.Google Scholar
  9. [9]
    A. WEIL. Remarks on Hecke's Lemma and its use. Colloque de Kyoto (1976).Google Scholar
  10. [10]
    E.T. WHITTAKER and G.N. WATSON. A Course of Modern Analysis. Cambridge University Press (1935).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M.-F. Vignéras

There are no affiliations available

Personalised recommendations