Modular forms of weight 1/2

  • J-P. Serre
  • H. M. Stark
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 627)


Modular Form Eisenstein Series Cusp Form Dirichlet Series Congruence Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.O.L. ATKIN and J. LEHNER, Hecke operators on Γ0(m), Math. Ann. 185 (1970), p. 134–160.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A.O.L. ATKIN and H.P.F. SWINNERTON-DYER, Modular forms on noncongruence subgroups, Proc. Symp. Pure Math. XIX, p. 1–25, Amer. Math. Soc., 1971.Google Scholar
  3. [3]
    P. DELIGNE and J-P. SERRE, Formes modulaires de poids 1, Ann. Sci. E.N.S. (4) 7 (1974), p. 507–530.MathSciNetzbMATHGoogle Scholar
  4. [4]
    E. HECKE, Mathematische Werke (zw. Aufl.) Vandenhoeck und Ruprecht, Göttingen, 1970.zbMATHGoogle Scholar
  5. [5]
    W. LI, Newforms and Functional Equations, Math. Ann. 212 (1975), p. 285–315.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. MAASS, Konstruktion ganzer Modulformen halbzahliger Dimension mit ϑ-Multiplikatoren in einer und zwei Variablen, Abh. Math. Sem. Univ. Hamburg 12 (1937), p. 133–162.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G. SHIMURA, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, 11, Princeton Univ. Press, 1971.Google Scholar
  8. [8]
    G. SHIMURA, On modular forms of half integral weight, Ann. of Math. 97 (1973), p. 440–481.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. SHIMURA, On the trace formula for Hecke operators, Acta Math. 132 (1974), p. 245–281.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J-P. Serre
  • H. M. Stark

There are no affiliations available

Personalised recommendations