Advertisement

Analytic properties of euler products of automorphic representations

  • C. J. Moreno
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 627)

Keywords

Eisenstein Series Cusp Form Local Component Automorphic Representation Euler Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    GALLAGHER P.X., A large sieve density estimate near s=1, Inventiones Math. 11 (1970), 329–339.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    GELBART S., Automorphic Forms on Adele Groups, Annals of Mathematics Studies, Princeton University Press, 1974.Google Scholar
  3. [3]
    JACQUET H., Automorphic forms on GL(2). Part II. Springer Lecture Notes, Volume 278, 1972.Google Scholar
  4. [4]
    KUBOTA T., Elementary Theory of Eisenstein Series, Kodansha Ltd. and John Wiley, 1973.Google Scholar
  5. [5]
    LANGLANDS R.P., Euler Products, Yale University Press, 1971.Google Scholar
  6. [6]
    MONTGOMERY H.L., The pair correlation of zeros of the zeta function, Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R.I., 1973, 181–193.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    RIEMANN B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse, Collected Works, Dover Publications, Inc., New York, 1953, 145–155.Google Scholar
  8. [8]
    SCHWARTZ L., Théorie des Distributions, vol. II, Hermann, Paris, 1959.zbMATHGoogle Scholar
  9. [9]
    SERRE J-P., Abelian L-Adic Representations and Elliptic Curves, W.A. Benjamin, Inc., New York, 1968.zbMATHGoogle Scholar
  10. [10]
    SERRE J-P., Facteurs locaux de fonctions zeta des variétés algébriques (définitions ét conjectures), Séminaire Delange-Pisot-Poitou, no. 19 (1970).Google Scholar
  11. [11]
    SHAHIDI F., Functional equation satisfied by certain L-functions, preprint (1976).Google Scholar
  12. [12]
    SIEGEL C.L., On the zeros of the Dirichlet L-functions, Ann. of Math. 46, (1945), 409–422.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    TATE J.T., Algebraic cycles and poles of zeta functions, Proc. Purdue Univ. Conf., 1963, 93–110.Google Scholar
  14. [14]
    WEIL A., Sur les formules explicites de la théorie des nombres, Isv. Acad. Nauk 36 (1972), 3–18.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • C. J. Moreno

There are no affiliations available

Personalised recommendations