System identification

  • K. J. Åström
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 294)


Canonical Structure Process Parameter Estimation Modern Control Theory Internal Coupling Stochastic Control Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, I.: Die minimale Ein-Ausgangs-Beschreibung von Mehrgrössensystemen und ihre Bestimmung aus Ein-Ausgangs-Messungen. Regelungstechnik und Prozessdatenverarbeitung, 5(1971) 203–206.zbMATHGoogle Scholar
  2. 2.
    Åström, K.J., Bohlin, T.: Numerical Identification of Linear Dynamic Systems from Normal Operating Records. Paper IFAC Symposium on Theory of Self-Adaptive Systems, Teddington, England. In Theory of Self-Adaptive Control Systems (Ed P.H. Hammond), Plenum Press, New York, 1966.Google Scholar
  3. 3.
    Åström, K.J.: Introduction to Stochastic Control Theory. Academic Press 1970.Google Scholar
  4. 4.
    Åström, K.J., Eykhoff, P.: System Identification — A Survey. Automatica, 7(1971) 123–162.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Åström, K.J. and Wittenmark, B.: Problems of Identification and Control. JMAA 34(1971) 90–113.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Åström, K.J. and Wittenmark, B.: On the Control of Constant but Unkown Systems. Paper 37.5. Preprints of the 5th World Congress of IFAC, Paris June 1972.Google Scholar
  7. 7.
    Bellman, R., Åström, K.J.: On Structural Identifiability. Mathematical Biosciences 7(1970), 329–339.CrossRefGoogle Scholar
  8. 8.
    Caines, P.E.: The Parameter Estimation of State Variable Models of Multivariable Linear Systems. Control Systems Centre Report No 146, The University of Manchester. Institute of Science and Technology, April 1971.Google Scholar
  9. 9.
    Deistler, M., Ober-Hofer, W.: Macro Economic Systems. Survey Paper 5th World Congress of IFAC Paris June 1972.Google Scholar
  10. 10.
    Eaton, J.: Identification for Control Purposes. IEEE Winter Meeting, New York 1967.Google Scholar
  11. 11.
    Eklund, K.: Linear Drum Boiler — Turbine Models. Report 7117, Division of Automatic Control, Lund Institute of Technology, Nov. 1971.Google Scholar
  12. 12.
    Fischer, F.M.: The Identification Problem in Econometrics, McGraw Hill, New York (1966).Google Scholar
  13. 13.
    Gustavsson, I.: Comparison of Different Methods for Identification of Industrial Processes. Automatica 8, (1972) 127–142.CrossRefzbMATHGoogle Scholar
  14. 14.
    Isermann, R.: Experimentelle Analyse der Dynamik von Regelsystemen — Identification Hochschultaschenbücher, Bibliographisches Institute Mannheim (1971).Google Scholar
  15. 15.
    Kashyap, R.L.: Maximum Likelihood Identification of Stochastic Linear Systems. IEEE Trans. Autom. Control AC-15 (1970) 25 pp.Google Scholar
  16. 16.
    Kostyukovski, Yu.M.-L.: Observability of Nonlinear Controlled Systems. Avtomatika i Telemekhanika 9 (1968) 29–42.MathSciNetGoogle Scholar
  17. 17.
    Lee, E.B., Marcus, L.: Foundations of Optimal Control Theory. Wiley, New York 1967.Google Scholar
  18. 18.
    Luenberger, D.G.: Canonical Forms for Linear Multivariable Systems. IEEE Trans., AC-12 (1967) 290–293.MathSciNetGoogle Scholar
  19. 19.
    Mayne, D.Q.: The Identification of Industrial Processes. Preprints JACC (1971).Google Scholar
  20. 20.
    Nieman, R.E., Fischer, D.G., Seborg, D.E.: A Review of Process Identification and Parameter Estimation Techniques. Int. J. Control 13n2 (1971) 209.Google Scholar
  21. 21.
    Sage, A.P., Melsa, J.L.: System Identification. Academic Press, New York (1971).zbMATHGoogle Scholar
  22. 22.
    Schoenwandt, U.: On Observability of Nonlinear Systems. Paper 8.2 Preprints 2nd IFAC Symposium on Identification and Process Parameter Estimation, Prague (1970).Google Scholar
  23. 23.
    Valis, J.: Identification of Multivariable Linear Systems of Unknown Structure by the Prior Knowledge Fitting Method, Report 7005, Sept., (1970), LTH. Also available in Proc. 2nd IFAC Symposium on Identification on Process Parameter Estimation, Prague Paper.Google Scholar
  24. 24.
    Woo, K.T.: Maximum Likelihood Identification of Noisy Systems. 2nd IFAC Symposium on Identification and Process Parameter Estimation, Prague, paper 3.1 (1970).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • K. J. Åström
    • 1
  1. 1.Division of Automatic ControlLund Institute of TechnologyLundSweden

Personalised recommendations