Weak monadic second order theory of succesor is not elementary-recursive

  • Albert R. Meyer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 453)


Turing Machine Decision Procedure Order Theory Finite Automaton Input Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, M. A machine-independent theory of the complexity of recursive functions, Jour. Assoc. Comp. Mach., 14, 2 (April, 1967), 322–336.zbMATHCrossRefGoogle Scholar
  2. 2.
    Blum, M. On effective procedures for speeding up algorithms, Jour. Assoc. Comp. Mach., 18, 2 (April, 1971), 290–305.zbMATHCrossRefGoogle Scholar
  3. 3.
    Büchi, J.R. and C.C. Elgot, Decision problems of weak second order arithmetics and finite automata, Part I, (abstract), AMS Notices, 5 (1959), 834.Google Scholar
  4. 4.
    Büchi, J.R. Weak second order arithmetic and finite automata, Zeit. f. Math. Log. and Grund. der Math., 6 (1960), 66–92.zbMATHCrossRefGoogle Scholar
  5. 5.
    Cooper, D.C. Theorem-proving in arithmetic without multiplication, Computer and Logic Group Memo. No. 16, U.C. of Swansea, April, 1972, to appear in Machine Intelligence 7.Google Scholar
  6. 6.
    Elgot, C.C. and M.O. Rabin, Decidability and undecidability of extensions of second (first) order theory of (generalized) successor, Jour. Symb. Logic, 31, 2 (June, 1966), 169–181.zbMATHCrossRefGoogle Scholar
  7. 7.
    Ferrante, J. and C. Rackoff, A decision procedure for the first order theory of real addition with order, Project MAC Tech. Memo 33, Mass. Inst. of Technology (May, 1973), 16pp., to appear SIAM Jour. Comp. Google Scholar
  8. 8.
    Grzegorczyk, A. Some classes of recursive functions, Rozprawy Matematyczne, 4 (1953), Warsaw, 1–45.MathSciNetGoogle Scholar
  9. 9.
    Meyer, A.R. Weak SIS cannot be decided (abstract 72T-E67), AMS Notices, 19, 5 (August, 1972), p. A-598.Google Scholar
  10. 10.
    Meyer, A.R. and L.J. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential space, 13 th Switching and Automata Theory Symp. (Oct. 1972), IEEE, 125–129.Google Scholar
  11. 11.
    Oppen, D.C. Elementary bounds for Presburger arithmetic, 5 th ACM Symp. Theory of Computing (April, 1973), 34–37.Google Scholar
  12. 12.
    Rabin, M.O. Decidability of second-order theories and automata on infinite trees, Trans. AMS, 141 (July, 1969), 1–35.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Rabin, M.O. and D. Scott, Finite automata and their decision problems, IBM Jour. Research and Development, 3 (1959), 115–125.MathSciNetGoogle Scholar
  14. 14.
    Ritchie, R.W. Classes of predictably computable functions, Trans. AMS, 106 (1963), 139–173.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Stearns, R.E., J. Hartmanis, and P.M. Lewis, III, Hierarchies of memory-limited computations, 6 th Switching Theory and Logical Design Symp. (1965), IEEE, 179–190.Google Scholar
  16. 16.
    Stockmeyer, L.J. and A.R. Meyer, Word problems requiring exponential time, 5 th ACM Symp. Theory of Computing (April, 1973), 1–9.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • Albert R. Meyer

There are no affiliations available

Personalised recommendations