A concrete representation of index theory in von Neumann algebras

  • Catherine L. Olsen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 693)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. V. Atkinson, The normal solubility of linear equations in normal space, Math. Sbornik N. S., 28 (70), (1951), 3–14 (Russian).Google Scholar
  2. [2]
    B. A. Barnes, The Fredholm elements of a ring, Canad. J. Math., 21 (1969), 84–95.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M. Breuer, Fredholm theories in von Neumann algebras I, Math. Ann., 178 (1968), 243–254.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Breuer, Fredholm theories in von Neumann algebras II, Math. Ann, 180 (1969), 313–325.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Breuer, Theory of Fredholm operators and vector bundles relative to a von Neumann algebra, Rocky Mountain J. Math., 3 (1973), 383–429.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Breuer and R. S. Butcher, Fredholm theories of mixed type with analytic index functions, Math. Ann., 209 (1974), 31–42.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. R. Caradus, W. E. Pfaffenburger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York: 1974.MATHGoogle Scholar
  8. [8]
    L. A. Coburn and A. Lebow, Algebraic theory of Fredholm operators, J. Math. and Mech., 15 (1966), 577–583.MathSciNetMATHGoogle Scholar
  9. [9]
    L. A. Coburn, R. G. Douglas, D. G. Schaeffer and I. M. Singer, C*-algebras of operators on a half-space II: index theory, Inst. Haut Etude Sci. Publ. Math., 40 (1971), 69–79.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    H. O. Cordes and J. P. Labrousse, The invariance of the index in the metric space of closed operators, J. Math. and Mech., 12 (1963), 693–720.MathSciNetMATHGoogle Scholar
  11. [11]
    R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York: 1972.MATHGoogle Scholar
  12. [12]
    K. E. Ekman, Indices on C*-algebras through representations in the Calkin algebra, Duke J. Math., 41 (1974), 413–432.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    M. Gartenberg, Extensions of the index in factors of type II, Proc. Amer. Math. Soc., 43 (1974), 163–168.MathSciNetMATHGoogle Scholar
  14. [14]
    C. L. Olsen, Approximation by unitary elements in a von Neumann algebra, in preparation.Google Scholar
  15. [15]
    M. J. O'Neill, Semi-Fredholm operators in von Neumann algebras, University of Kansas Technical Report No. 21 (New Series).Google Scholar
  16. [16]
    S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, New York: 1971.CrossRefMATHGoogle Scholar
  17. [17]
    D. G. Schaeffer, An application of von Neumann algebras to finite difference equations, Ann. Math., 95 (1972), 116–129.MathSciNetCrossRefGoogle Scholar
  18. [18]
    M. R. F. Smyth, Fredholm theory in Banach algebras, Trinity College Dublin preprint, 1975.Google Scholar
  19. [19]
    J. Tomiyama, Generalized dimension function for W*-algebras of infinite type, Tohoku Math. J., 10 (1958), 121–129.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    W. Wils, Two-sided ideals in W*-algebras, J. fur die Reine und Angewandte Math., 242–244 (1970), 55–68.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Catherine L. Olsen
    • 1
  1. 1.State University of New York at BuffaloUSA

Personalised recommendations