Application of a mixed finite element method to a nonlinear problem of elasticity

  • T. Miyoshi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 606)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Berger, M.S.: On von Kármán’s equations and the buckling of a thin elastic plate I, The clamped plate. Comm. Pure and Appl. Math. 20,687–720(1967).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2].
    Knightly, G.H.: An existence theorem for the von Kármán equations. Arch. Rational Mech. Anal. 27,233–242(1967).MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3].
    Kantrovich, L.V. and G.P.Akilov: Functional Analysis in Normed Spaces: Pergamon press 1964.Google Scholar
  4. [4].
    Miyoshi, T.: A finite element method for the solutions of fourth order partial differential equations. Kumamoto J. Sci. (Math.) 9,87–116(1972).MathSciNetzbMATHGoogle Scholar
  5. [5].
    Miyoshi, T.: A mixed finite element method for the solutions of the von Kármán equations. Numer Math. (to appear).Google Scholar
  6. [6].
    Miyoshi, T.: Lumped mass approximation to the nonlinear bending of elastic plates. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • T. Miyoshi
    • 1
  1. 1.Department of MathematicsKumamoto UniversityKumamotoJapan

Personalised recommendations