Advertisement

Variations de fibrés vectoriels applications aux espaces de sections et aux diviseurs

  • Frédéric Campana
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 670)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    D. Barlet. Espace analytique des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie, Séminaire F. Norguet (1974–1975).Google Scholar
  2. [2]
    H. Cartan. Quotients of analytic spaces, Contribution to function theory, Tata Institute, Bombay, 1960, 1–15.Google Scholar
  3. [3]
    H. Cartan. Séminaire 1960–61. Exposé 12.Google Scholar
  4. [4]
    A. Douady. Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier 16, 1966, 1–98.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Frisch. Points de platitude d’un morphisme d’espaces analytiques complexes, Inv. Math. 4, 1967, 118–138.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R.C. Gunning et H. Rossi. Analytic functions of several complex variables, Prentice-Hall, 1965.Google Scholar
  7. [7]
    K. Kodaira. On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math. 60, 1954, 28–48.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Mazet. Un théorème d’image directe propre, Séminaire Pierre Lelong (Analyse) 1972–1973, Lect. N. in Math. 410, Springer 1974, 107–117.Google Scholar
  9. [9]
    B. Moishezon. On n-dimensional compact complex varieties with n algebraically independant meromorphic functions, A.M.S. Translations, Ser. 2, 63.Google Scholar
  10. [10]
    J.P. Serre. Faisceaux algébriques cohérents, Ann. of Math. 61, 1955, 197–278.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Ueno. Classification theory of algebraic varieties and complex spaces, Lect. N. in Math. 439, Springer, 1975.Google Scholar
  12. [12]
    H. Cartan-J-P. Serre. Un théorème de finitude concernant les variétés analytiques compactes, C.R. Acad. Sc. Paris 237, 1953, 128–130.MathSciNetzbMATHGoogle Scholar
  13. [13]
    A. Weil. Variétés kählériennes, Hermann, 1971.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Frédéric Campana

There are no affiliations available

Personalised recommendations