Advertisement

Functions of polynomial growth and domains of holomorphy

  • Peter Pflug
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 670)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Diederich, K. und Fornaess, J.E.: Exhaustion functions and Stein neighborhoods for smooth pseudoconvex domains, Proc. Nat. Acad. Sci. U.S.A. (to appear).Google Scholar
  2. [2]
    Fischer, G.: Holomorph-vollständige Faserbündel, Math. Ann. 180, 341–348 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Fischer, G.: Fibrés holomorphes au-dessus d'un espace de Stein, Séminaire sur les espaces analytiques, Bucarest (1969).Google Scholar
  4. [4]
    Frenkel, J.: Cohomologie nonabélienne et espaces fibrés, Bull. Soc. Math. France 83 (1957), 135–218.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Hirschowitz, A.: Domaines de Stein et fonctions holomorphes bornés, Math. Ann. 213, 185–193.Google Scholar
  6. [6]
    Kajiwara, J.: On the envelope of holomorphy of a generalized tube in ℂn, Kodai math. Sem. Reports 15, 106–110 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Königsberger, K.: Über die Holomorphie-Vollständigkeit lokal trivialer Faserräume, Math. Ann. 189, 178–184 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Matsushima, Y. et Morimoto, A.: Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. math. France 88, 137–155 (1960).MathSciNetzbMATHGoogle Scholar
  9. [9]
    Narasimhan, R.: The Levi problem for complex spaces, Math. Ann. 142, 355–365 (1961).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Narasimhan, R.: The Levi problem for complex spaces II, Math. Ann. 146, 195–216 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Pflug, P.: Über polynomiale Funktion auf Holomorphiegebiete, Math. Zeitschr. 139, 133–139 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Pflug, P.: Quadratintegrable holomorphe Funktionen und die Serre-Vermutung, Math. Ann. 216, 285–288 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Pflug, P.: Glatte Holomorphiegebiete mit plurisubharmonischer innerer Randfunktion sind Banach-Stein, Arkiv f. mat. 14, 55–58 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Sibony, N.: Fibrés holomorphes et métrique de Carathéodory, C.R. Acad. Sci. Paris 279, 261–264 (1974).MathSciNetzbMATHGoogle Scholar
  15. [15]
    Siu, Y.T.: All plane domains are Banach-Stein, manuscripta math. 14, 101–105 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Siu, Y.T.: Holomorphic fiber bundles whose fibers are bounded Stein domains with zero first Betti number, Math. Ann. 219, 171–192 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Skoda, H.: Application de techniques L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Scient. Ec. Norm. Sup. 5, 548–580 (1972).MathSciNetzbMATHGoogle Scholar
  18. [18]
    Stehle, J.L.: Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques, C.R. Acad. Sci. Paris 279, 235–238 (1974).MathSciNetzbMATHGoogle Scholar
  19. [19]
    Stein, K.: Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math. 7, 354–361 (1956).CrossRefzbMATHGoogle Scholar
  20. [20]
    Vladimirov, V.S.: Methods of the theory of functions of many complex variables, Cambridge-London, M.I.T. Press (1966).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Peter Pflug

There are no affiliations available

Personalised recommendations