Advertisement

Functions of polynomial growth and domains of holomorphy

  • Peter Pflug
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 670)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Diederich, K. und Fornaess, J.E.: Exhaustion functions and Stein neighborhoods for smooth pseudoconvex domains, Proc. Nat. Acad. Sci. U.S.A. (to appear).Google Scholar
  2. [2]
    Fischer, G.: Holomorph-vollständige Faserbündel, Math. Ann. 180, 341–348 (1969).MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Fischer, G.: Fibrés holomorphes au-dessus d'un espace de Stein, Séminaire sur les espaces analytiques, Bucarest (1969).Google Scholar
  4. [4]
    Frenkel, J.: Cohomologie nonabélienne et espaces fibrés, Bull. Soc. Math. France 83 (1957), 135–218.MathSciNetMATHGoogle Scholar
  5. [5]
    Hirschowitz, A.: Domaines de Stein et fonctions holomorphes bornés, Math. Ann. 213, 185–193.Google Scholar
  6. [6]
    Kajiwara, J.: On the envelope of holomorphy of a generalized tube in ℂn, Kodai math. Sem. Reports 15, 106–110 (1963).MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Königsberger, K.: Über die Holomorphie-Vollständigkeit lokal trivialer Faserräume, Math. Ann. 189, 178–184 (1970).MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Matsushima, Y. et Morimoto, A.: Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. math. France 88, 137–155 (1960).MathSciNetMATHGoogle Scholar
  9. [9]
    Narasimhan, R.: The Levi problem for complex spaces, Math. Ann. 142, 355–365 (1961).MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Narasimhan, R.: The Levi problem for complex spaces II, Math. Ann. 146, 195–216 (1962).MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Pflug, P.: Über polynomiale Funktion auf Holomorphiegebiete, Math. Zeitschr. 139, 133–139 (1974).MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Pflug, P.: Quadratintegrable holomorphe Funktionen und die Serre-Vermutung, Math. Ann. 216, 285–288 (1975).MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Pflug, P.: Glatte Holomorphiegebiete mit plurisubharmonischer innerer Randfunktion sind Banach-Stein, Arkiv f. mat. 14, 55–58 (1976).MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Sibony, N.: Fibrés holomorphes et métrique de Carathéodory, C.R. Acad. Sci. Paris 279, 261–264 (1974).MathSciNetMATHGoogle Scholar
  15. [15]
    Siu, Y.T.: All plane domains are Banach-Stein, manuscripta math. 14, 101–105 (1974).MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Siu, Y.T.: Holomorphic fiber bundles whose fibers are bounded Stein domains with zero first Betti number, Math. Ann. 219, 171–192 (1976).MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Skoda, H.: Application de techniques L2 à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Scient. Ec. Norm. Sup. 5, 548–580 (1972).MathSciNetMATHGoogle Scholar
  18. [18]
    Stehle, J.L.: Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques, C.R. Acad. Sci. Paris 279, 235–238 (1974).MathSciNetMATHGoogle Scholar
  19. [19]
    Stein, K.: Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math. 7, 354–361 (1956).CrossRefMATHGoogle Scholar
  20. [20]
    Vladimirov, V.S.: Methods of the theory of functions of many complex variables, Cambridge-London, M.I.T. Press (1966).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Peter Pflug

There are no affiliations available

Personalised recommendations