On the asymptotic behaviour of gaussian spherical integrals

  • Alexander Hertle
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 990)


Gaussian Measure Separable Hilbert Space Asymptotic Series Integrability Criterion Finite Dimensional Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DIEUDONNÉ J., Treatise on Analysis, Vol. 6, Academic Press, 1978.Google Scholar
  2. 2.
    DOETSCH G., Handbuch der Laplace-Transformation, Bd. 2, Birkhäuser, 1955.Google Scholar
  3. 3.
    DOETSCH G., Einführung in Theorie und Anwendung der Laplace-Transformation, Birkhäuser, 1958.Google Scholar
  4. 4.
    GÖTZE F., Asymptotic expansions for bivariate von Mises functionals, Z. Wahrscheinlichkeitstheorie verw. Gebiete 50 (1979), 333–355.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    HERTLE A., Gaussian surface measures and the Radon transform on separable Banach spaces, Proc. Measure Theory Oberwolfach 1979, Lecture Notes in Math. 794, pp.513–531, Springer-Verlag, 1980.Google Scholar
  6. 6.
    HERTLE A., Gaussian plane and spherical means in separable Hilbert spaces, Proc. Measure Theory Oberwolfach 1981, Lecture Notes in Math. 945, pp.314–335, Springer-Verlag, 1982.Google Scholar
  7. 7.
    KUO H.H., Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer-Verlag, 1975.Google Scholar
  8. 8.
    MARTINOV G.V., Computation of distribution functions of quadratic forms of normally distributed random variables, Theory Prob. Appl. 20 (1975), 782–793.CrossRefGoogle Scholar
  9. 9.
    SKOROHOD A.V., Integration in Hilbert Space, Springer-Verlag, 1974.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Alexander Hertle
    • 1
  1. 1.Fachbereich MathematikUniversität MainzMainz

Personalised recommendations