Banach space valued processes with independent increments and stochastic integration

  • E. Dettweiler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 990)


Banach Space Gaussian Process Radon Measure Continuous Linear Operator Stochastic Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. ARAUJO, E. GINÉ: The central limit theorem for real and Banach valued random variables. New York-Chichester-Brisbane-Toronto: John Wiley & Sons 1980.zbMATHGoogle Scholar
  2. [2]
    A. BADRIKIAN: Prolégomènes au calcul des probabilités dans les Banach. In: Ecole d'Eté de Probabilités de Saint-Flour V-1975, Ed. P.L. Hennequin. Lecture Notes in Math. 539. Berlin-Heidelberg-New York: Springer 1976.CrossRefGoogle Scholar
  3. [3]
    D.L. BURKHOLDER: Distribution function inequalities for martingales. The Annals of Probability 1, 19–42 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. DIEUDONNÉ: Foundations of modern analysis. New York-London: Academic Press 1969.zbMATHGoogle Scholar
  5. [5]
    E. DETTWEILER: Grenzwertsätze für Wahrscheinlichkeitsmaße auf Badrikianschen Räumen. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 285–311 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E. DETTWEILER: A characterization of the Banach spaces of type p by Lévy measures. Math. Z. 157, 121–130 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    E. DETTWEILER: Poisson measures on Banach lattices. In: Probability measures on groups. Proceedings of the 6th conference in Oberwolfach, Ed. H. Heyer. Lecture Notes in Math. 928, 16–45. Berlin-Heidelberg-New York: Springer 1982.CrossRefGoogle Scholar
  8. [8]
    E.B. DYNKIN: Die Grundlagen der Theorie der Markoffschen Prozesse. Berlin-Göttingen-Heidelberg: Springer 1961.CrossRefzbMATHGoogle Scholar
  9. [9]
    I.I. GIHMAN, A.V. SKOROHOD: The theory of stochastic processes II. Berlin-Heidelberg-New York: Springer 1975.CrossRefzbMATHGoogle Scholar
  10. [10]
    J.B. GRAVERAUX, J. PELLAUMAIL: Formule de Ito pour des processus non continus à valeurs dans des espaces de Banach. Ann. Inst. Henri Poincaré, Section B, Vol. 10, 399–422 (1974).MathSciNetzbMATHGoogle Scholar
  11. [11]
    H. HEYER: Probability measures on locally compact groups. Berlin-Heidelberg-New York: Springer 1977.CrossRefzbMATHGoogle Scholar
  12. [12]
    J. HOFFMANN-JØRGENSEN, G. PISIER: The law of large numbers and the central limit theorem in Banach spaces. Ann. Prob. 4, 587–599 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. HOFFMANN-JØRGENSEN: Probability in Banach Spaces. In: Ecole d'Eté de Probabilités de Saint-Flour VI-1976, Ed. P.L. Hennequin. Lecture Notes in Math. 598. Berlin-Heidelberg-New York: Springer 1977.CrossRefGoogle Scholar
  14. [14]
    J. LINDENSTRAUSS, L. TZAFRIRI: Classical Banach Spaces II, Function Spaces. Berlin-Heidelberg-New York: Springer 1979.CrossRefzbMATHGoogle Scholar
  15. [15]
    B. MAUREY: Probabilités cylindriques, type et ordre, applications radonifiantes. Séminaire Maurey-Schwartz, Ecole Polytechnique, Paris 1972–1973.Google Scholar
  16. [16]
    M. METIVIER: The stochastic integral with respect to processes with values in a reflexiv Banach space. Theory of Prob. Appl. 19, 758–787 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. METIVIER, J. PELLAUMAIL: Stochastic Integration. New York-London-Toronto-Sydney-San Francisco: Academic Press 1980.zbMATHGoogle Scholar
  18. [18]
    G. PISIER: Martingales with values in uniformly convex spaces. Israel J. Math. 20, 326–350 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J. ROSINSKI: Central limit theorems for dependent random vectors in Banach spaces. In: Martingale theory in harmonic analysis and Banach spaces, Proceedings, Cleveland 1981, Eds J.-A. Chao, W.A. Woyczynski. Lecture Notes in Math. 939. Berlin-Heidelberg-New York: Springer 1982.Google Scholar
  20. [20]
    W.A. WOYCZYNSKI: Geometry and martingales in Banach spaces. In: Winter School on Probability, Karpacz 1975, 229–275. Lecture Notes in Math. 472. Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  21. [21]
    W.A. WOYCZYNSKI: Geometry and martingales in Banach spaces II. Adv. in Probability, vol 4, 267–517. New York: Decker 1978.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • E. Dettweiler
    • 1
  1. 1.Mathematisches Institut der Universität Tübingen74 TübingenGermany

Personalised recommendations