Units in the modular function field

  • Dan Kubert
  • Serge Lang
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 601)


Modular Form Elliptic Curf Galois Group Modular Function Finite Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B-SwD]
    B. BIRCH and H. SWINNERTON-DYER, Notes on elliptic curves II, J. reine angew. Math. 218 (1965) pp. 79–108.MathSciNetzbMATHGoogle Scholar
  2. [De]
    V. A. DEMJANENKO, On the uniform boundedness of the torsion of elliptic curves over algebraic number fields, Math. USSR Izvestija Vol. 6 (1972) No. 3 pp. 477–490CrossRefGoogle Scholar
  3. [Dr]
    V. G. DRINFELD, Two theorems on modular curves, Functional analysis and its applications, Vol. 7 No. 2, AMS translation from the Russian, April–June 1973, pp. 155–156Google Scholar
  4. [F]
    R. FRICKE, Über die Substitutionsgruppen, welche zu den aus dem Legendre'schen Integralmodul k2(θ) gezogenen Wurzeln gehören, Math. Ann. 28 (1887) pp. 99–118CrossRefGoogle Scholar
  5. [K 1]
    D. KUBERT, Quadratic relations for generators of units in the modular function field, Math. Ann. 225 (1977) pp. 1–20MathSciNetzbMATHCrossRefGoogle Scholar
  6. [K 2]
    _____, A system of free generators for the universal even ordinary Z(2) distribution on Q2k/z2k, Math. Ann. 224 (1976) pp. 21–31MathSciNetzbMATHCrossRefGoogle Scholar
  7. [K 3]
    _____, Universal bounds on the torsion of elliptic curves, J. London Math. Soc. to appearGoogle Scholar
  8. [KL]
    D. KUBERT and S. LANG, Units in the modular function field, Math. Ann.: I, 1975, pp. 67–96MathSciNetCrossRefGoogle Scholar
  9. [KL]a
    : II, 1975, pp. 175–189MathSciNetCrossRefGoogle Scholar
  10. [KL]b
    : III, 1975, pp. 273–285MathSciNetCrossRefGoogle Scholar
  11. [KL]c
    : IV, 1977, pp. 223–242MathSciNetCrossRefGoogle Scholar
  12. [KL D]
    ______, Distributions on toroidal groups, Math. Z. 148 (1976) pp. 33–51MathSciNetzbMATHCrossRefGoogle Scholar
  13. [L 1]
    S. LANG, Elliptic Functions, Addison Wesley, 1973Google Scholar
  14. [L 2]
    _____, Division points on curves, Ann. Mat. pura et appl. IV, Tomo LXX (1965) pp. 229–234CrossRefGoogle Scholar
  15. [L 3]
    _____, Integral points on curves, Pub. IHES No. 6 (1960) pp. 27–43Google Scholar
  16. [Ma]
    J. MANIN, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat. Tom 36 (1972) No. 1, AMS translation pp. 19–64MathSciNetzbMATHCrossRefGoogle Scholar
  17. [Ner]
    A. NÉRON, Quasi-fonctions et hauteurs sur les variétés abéliennes, Ann. Math. 82 (1965) pp. 249–331zbMATHCrossRefGoogle Scholar
  18. [New]
    M. NEWMAN, Construction and application of a class of modular functions, Proc. London Math. Soc. (3) (1957) pp. 334–350Google Scholar
  19. [O]
    A. OGG, Rational points on certain elliptic modular curves, AMS conference St. Louis, 1972, pp. 221–231Google Scholar
  20. [Ra]
    K. RAMACHANDRA, Some applications of Kronecker's limit formula, Ann. Math. 80 (1964) pp. 104–148MathSciNetzbMATHCrossRefGoogle Scholar
  21. [Rob 1]
    G. ROBERT, Unités elliptiques, Bull. Soc. Math. France, Mémoire No. 36 (1973)Google Scholar
  22. [Rob 2]
    _____, Nombres de Hurwitz et unités elliptiques, to appearGoogle Scholar
  23. [Roh]
    D. ROHRLICH, Modular functions and the Fermat curve, to appearGoogle Scholar
  24. [Si]
    C. L. SIEGEL, Lectures on advanced analytic number theory, Tate Institute Notes, 1961, 1965Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Dan Kubert
    • 1
  • Serge Lang
    • 2
  1. 1.Mathematics DepartmentCornell UniversityIthaca
  2. 2.Department of MathematicsYale UniversityNew Haven

Personalised recommendations