On the normalizer of γ0(N)

  • P. G. Kluit
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 601)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ATKIN A.O.L., LEHNER J.: Hecke operators on γ0(m), Math. Ann. 185, pp. 134–160 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    BIRCH B.J.: Some calculations of modular relations, Modular Functions of One Variable I, Springer-Verlag, Lecture Notes in Math. 320, pp. 175–186.Google Scholar
  3. [3]
    FELL H., NEWMAN M., ORDMAN E.: Tables of genera of groups of linear fractional transformations, Journal of Research of the National Bureau of Standards, P. Math. and Math. Physics 678 (1), (1963).Google Scholar
  4. [4]
    FRICKE R.: Lehrbuch der Algebra, vol. 3, Braunschweig, Vieweg (1928)Google Scholar
  5. [5]
    HELLING H.: On the commensurability class of the rational modular group, Journal of the London Math. Soc. (2), pp. 67–72 (1970)Google Scholar
  6. [6]
    : Note über das Geschlecht gewisser arithmetischer Gruppen, Math. Ann. 205, pp. 173–179 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    LEHNER J. and NEWMAN M.: Weierstrass points of γ0(n), Annals of Math., vol. 79 (2) (1964).Google Scholar
  8. [8]
    OGG A.P.: Hyperelliptic modular curves, Bull. Soc. Math. France 102, pp. 449–462 (1974)MathSciNetzbMATHGoogle Scholar
  9. [9]
    RALEIGH J.: The Fourier coefficients of the invariants j(21/2;τ) and j(31/2;τ), Transactions of the A.M.S., vol. 87 (1958), pp. 90–107.MathSciNetzbMATHGoogle Scholar
  10. [10]
    SHIMURA G.: Introduction to the arithmetic theory of automorphic functions, Princeton University Press (1971)Google Scholar
  11. [11]
    SMART J.R.: Parametrization of the automorphic forms for the Hecke groups G(√2) and G(√3), Duke Math. J., vol. 1, nr. 3, pp. 395–404 (1964)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • P. G. Kluit
    • 1
  1. 1.Vrije Universiteit de BoelelaanAmsterdam

Personalised recommendations