Courbes modulaires de niveau 11

  • Gérard Ligozat
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 601)


Series Theta Nous Allons Proposition Suivante Obtient Ainsi Soit Encore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. ATKIN, J. LEHNER.-Hecke operators on γ0(m), Math. Ann., 185, (1970), p. 134–160.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    B.J. BIRCH, W. KYUK (ed.).-Numerical tables on elliptic curves, in Modular Functions of One Variable IV, Lecture Notes in Math. 476, p. 74–144, Berlin-Heidelberg-New York, Springer (1975).Google Scholar
  3. [3]
    E. HECKE.-Ueber ein Fundamentalproblem aus der Theorie der elliptischen Modulfunktionen, Abh. Math. Sem. Hamburg 6 (1928), p. 235–257 [Mathematische Werke, Göttingen, Vandenhoeck and Ruprecht (1959), p. 525–547].zbMATHCrossRefGoogle Scholar
  4. [4]
    E. HECKE.-Grundlagen einer Theorie der Integralgruppen und der Integralperioden bei den Normalteilern der Modulgruppe, Math. Ann. 116 (1939), p. 469–510 [Mathematische Werke, Göttingen, Vandenhoeck and Ruprecht (1959), p. 731–772].MathSciNetCrossRefGoogle Scholar
  5. [5]
    D. KUBERT, S. LANG.-Units in the Modular Function Field. II. A full Set of Units, Math. Ann. 218 (1975), p. 175–189.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J. LEHNER.-A short Course in Automorphic Functions, Holt, Rinehart and Winston (1966).Google Scholar
  7. [7]
    G. LIGOZAT.-Courbes modulaires de genre 1, Bull. Soc. Math. France, Suppl., Mém. No 43, 80p (1975).Google Scholar
  8. [8]
    G. LIGOZAT.-Groupes cuspidaux des courbes modulaires de niveau p, (à paraître).Google Scholar
  9. [9]
    Y. MANIN.-Points paraboliques et fonctions zêta des courbes modulaires (en russe), Izv. Akad. N. S.S.S.R., 36 (1972), p. 19–66 [trad. anglaise: Math. USSR-Izvestja, 6 (1972), p. 19–64].MathSciNetzbMATHGoogle Scholar
  10. [10]
    B. MAZUR.-Courbes elliptiques et symboles modulaires, Sém. Bourbaki, 24e année (1971/72), exposé no 414, Lecture Notes in Math., 317, Berlin-Heidelberg-New York, Springer (1973).Google Scholar
  11. [11]
    A. OGG.-Rational points on certain elliptic modular curves, Proc. Symp. Pure Math., vol. 24, Amer. Math. Soc., Providence R.I. (1973), p. 221–231.MathSciNetCrossRefGoogle Scholar
  12. [12]
    J.-P. SERRE.-Représentations linéaires des groupes finis (2ème édition), Paris, Hermann (1971).zbMATHGoogle Scholar
  13. [13]
    G. SHIMURA.-Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, No 11, Iwanami Shoten and Princeton University Press (1971).Google Scholar
  14. [14]
    G. SHIMURA.-On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan, vol. 25, no 3 (1973), p. 523–544.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    G. SHIMURA.-On elliptic curves with complex multiplication as factors of the jacobians of modular function fields, Nagoya Math. J., vol. 43 (1971), p. 199–208.MathSciNetzbMATHGoogle Scholar
  16. [16]
    J. VÉLU.-Courbes elliptiques sur φ ayant bonne réduction en dehors de {11}, C. R. Acad. Sci. Paris, 273 (1971), p. 73–75.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Gérard Ligozat
    • 1
  1. 1.Centre d'OrsayUniversité de Paris-SudOrsayFrance

Personalised recommendations