Advertisement

Ramanujan's unpublished work on congruences

  • R. A. Rankin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 601)

Keywords

Partition Function Modular Form Eisenstein Series Cambridge Philos Arithmetical Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.J. Birch, A look back at Ramanujan's notebooks, Math. Proc. Cambridge Philos. Soc. 78(1975), 73–79.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    P. Deligne, Formes modulaires et représentations l-adiques. Séminaire Bourbaki, 355, February 1969.Google Scholar
  3. 3.
    G.H. Hardy, Ramanujan; twelve lectures on subjects suggested by his life and work (Cambridge, 1940).Google Scholar
  4. 4.
    G.H. Hardy, P.V. Seshu Aiyar and B.M. Wilson (editors), Collected papers of Srinivasa Ramanujan (Cambridge, 1927).Google Scholar
  5. 5.
    E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys. (3) 13(1908), 305–312.zbMATHGoogle Scholar
  6. 6.
    E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen (Leipzig, 1909).Google Scholar
  7. 7.
    W.J. LeVeque, Reviews in number theory, Amer. Math. Soc., Providence, R.I., 1974, Vol.2, F35.Google Scholar
  8. 8.
    M. Newman, Congruences for the coefficients of modular forms and some new congruences for the partition function, Canad. J. Math. 9(1957), 549–552.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22(1916), 159–184; no 18 in [4].Google Scholar
  10. 10.
    S. Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge Philos. Soc. 19(1919), 207–210; no 25 in [4].zbMATHGoogle Scholar
  11. 11.
    S. Ramanujan, Congruence properties of partitions, Proc. London Math. Soc. (2) 18(1920), xix–xx; no 28 in [4].MathSciNetzbMATHGoogle Scholar
  12. 12.
    S. Ramanujan, Congruence properties of partitions, Math. Z. 9(1921), 147–153; no 30 in [4].MathSciNetCrossRefGoogle Scholar
  13. 13.
    R.A. Rankin, George Neville Watson (obituary notice), J. London Math. Soc. 41(1966), 551–565.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    R.A. Rankin, The divisibility of divisor functions, Proc. Glasgow Math. Assoc. 5(1961), 35–40.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    J.M. Rushforth, Congruence properties of the partition function and associated functions, Ph.D. thesis, University of Birmingham, 1950.Google Scholar
  16. 16.
    J.M. Rushforth, Congruence properties of the partition function and associated functions, Proc. Cambridge Philos. Soc. 48(1952), 402–413.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    E.J. Scourfield, On the divisibility of σv(n), Acta Arith. 10(1964), 245–285.MathSciNetzbMATHGoogle Scholar
  18. 18.
    J.-P. Serre, Une interprétation des congruences relatives à la fonction τ de Ramanujan. Séminaire Delange-Pisot-Poitou: 1967/68, Théorie des Nombres, Fasc. 1, Exp.14, 17 pp.Google Scholar
  19. 19.
    J.-P. Serre, Divisibilité des coefficients des formes modulaires de poids entier, C.R. Acad. Sci. Paris Sér.A 279(1974), 679–682.zbMATHGoogle Scholar
  20. 20.
    J.-P. Serre, Divisibilité de certaines fonctions arithmétiques. Séminaire Delange-Pisot-Poitou: 1974/75, Théorie des Nombres, Exp.20, 28pp.Google Scholar
  21. 21.
    H.P.F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III, Lecture Notes in Mathematics, 350(1973), 1–55.MathSciNetCrossRefGoogle Scholar
  22. 22.
    G.N. Watson, Über Ramanujansche Kongruenzeigenschaften der Zerfallungsanzahlen I, Math.Z. 39(1935), 712–731.MathSciNetCrossRefGoogle Scholar
  23. 23.
    G.N. Watson, A table of Ramanujan's function τ(n), Proc. London Math. Soc. (2) 51(1948), 1–13.Google Scholar
  24. 24.
    J.R. Wilton, On Ramanujan's arithmetical function Σr,s(n), Proc. Cambridge Philos. Soc. 25(1929), 255–264.zbMATHCrossRefGoogle Scholar
  25. 25.
    J.R. Wilton, Congruence properties of Ramanujan's function τ(n), Proc. London Math. Soc. (2) 31(1929), 1–10.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • R. A. Rankin
    • 1
  1. 1.University of GlasgowGlasgow

Personalised recommendations