The lebesgue constants for polynomial interpolation

  • T. J. Rivlin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 399)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Askey, R., Mean convergence of orthogonal series and Lagrange interpolation, Acta Mathematica (Budapest). To appear.Google Scholar
  2. 2.
    Bernstein, S., Sur la limitation des valeurs d'un polynome pn(x) de degré n sur tout un segment par ses valeurs en (n+1) points du segment, Izv. Akad. Nauk S.S.R. Classe des Sciences Math. et Naturelles, 1931, 1025–1050.Google Scholar
  3. 3.
    Cheney, E.W., Price, K., Minimal projections, Approximation Theory, Proceedings of a Symposium held at Lancaster, July 1969, ed. A. Talbot, Academic Press, London, 1970, 261–289.Google Scholar
  4. 4.
    Ehlich, H., and Zeller, K., Answertung der Normen von Interpolations-operatoren, Math. Ann., 164, 1966, 105–112.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Erdös, P., Problems and results on the theory of interpolation, II, Acta Math. Acad. Sci. Hung., 12, 1961, 235–244.MATHCrossRefGoogle Scholar
  6. 6.
    Erdös, P., Problems and results on the convergence and divergence properties of the Lagrange interpolation polynomials and some extremal problems, Mathematica, 10, 1968, 65–73Google Scholar
  7. 7.
    Erdös, P., On the maximum of the fundamental functions of the ultra-spherical polynomials, Annals of Math., 45, 1944, 335–339MATHCrossRefGoogle Scholar
  8. 8.
    Erdös, P., Grünwald, G., Note on an elementary problem of interpolation, Bull. A.M.S., 44, 1938, 515–518.CrossRefGoogle Scholar
  9. 9.
    Fejér, L., Lagrangesche Interpolation und die zugehorigen konjugierten Punkte, Math. Ann., 106, 1932, 1–55MathSciNetCrossRefGoogle Scholar
  10. 10.
    Golomb, M., Lectures on Theory of Approximation, Argonne Nat. Lab., Argonne, Ill., U.S.A., 1962.Google Scholar
  11. 11.
    Luttmann, F., and Rivlin, T., Some numerical experiments in the theory of polynomial interpolation, IBM J. of Research and Development, 9, 1965, 187–191.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Szegö, G., Orthogonal Polynomials, Amer. Math. Soc., N.Y., 1959Google Scholar
  13. 13.
    Webster, M., Note on certain Lagrange interpolation polynomials Bull. Am. M. S. 45, 1939, 870–873.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Websterm M., Maximum of certain fundamental Lagrange interpolation polynomials, Bull. A.M.S., 47, 1941, 71–73.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • T. J. Rivlin

There are no affiliations available

Personalised recommendations