Advertisement

K-types and singular spectrum

  • M. Kashiwara
  • M. Vergne
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 728)

Keywords

Symmetric Space Maximal Compact Subgroup Principal Series Nilpotent Orbit Left Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. T. Seeley, Eigenfunction expansions of analytic functions, Proc. Amer. Math. Soc. 21, 1969, 734–738.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Cerezo, A., Chazarain, J., Piriou A.: Introduction aux hyperfonctions. Lecture Notes in Math.Google Scholar
  3. [3]
    Miwa, T., Oshima, T., Jimbo, M.: Introduction to micro-local analysis. Proceeding of the O.J.I. seminar on Algebraic Analysis. Publ. R.I.M.S. Kyoto Univ. 12 supplement, 267–300 (1966).MathSciNetCrossRefGoogle Scholar
  4. [4]
    Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo differential equations. Lecture notes in Math. 287, pp. 265–529. Berlin, Heidelberg, New York: Springer 1973.Google Scholar
  5. [5]
    King, D.: The geometric structure of the tensor product of irreducible representations of a complex semi-simple Lie algebra. Preprint, M.I.T. 1977.Google Scholar
  6. [6]
    Barbasch, D.: Fourier inversion for unipotent invariant integrals, to appear in Trans. Amer. Math. Soc.Google Scholar
  7. [7]
    Kashiwara, M., Vergne, M.: Functions on the Shilov boundary of the generalized half plane—Same volume.Google Scholar
  8. [8]
    Speh, B.: Composition series for degenerate principal series representations of SU(2,2). Preprint, M.I.T. 1977.Google Scholar
  9. [9]
    D. Barbasch and D. Vogan (to appear).Google Scholar
  10. [10]
    A. Cerezo et F. Rouviere: Solution elementaire d'un operateur differentiel lineaire invariant a gauche sur un groupe de Lie riel compact et sur un espace homogene reductif compact. Ann. Sci. E.N.S. 4 (1969), 561–581.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • M. Kashiwara
    • 1
  • M. Vergne
    • 2
  1. 1.Research Institute for Mathematical SciencesUniversity of KyotoJapan
  2. 2.Centre National de la Recherche ScientifiqueMassachusetts Institute of TechnologyUSA

Personalised recommendations