Advertisement

Polynomes de Vogan pour SL(n, ℂ)

  • Michel Duflo
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 728)

Abstract

In [13] Vogan associates to an irreducible Harish-Chandra module for a real semi-simple Lie group a polynomial on a Cartan subalgebra. I prove that, in the case of the group SL(n,ℂ), some conjectures made by Vogan on these polynomials are true. The proof uses some of the Joseph's ideas in [6].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    W. Borho et J.C. Jantzen. Uber primitive Ideale in der Einhüllenden einer halbeinfacher Lie-algebra. Inventiones Math. 39(1977) 1–53.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    M. Duflo. Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple. Annals of Math. 105(1977) 107–130.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    J.C. Jantzen. Moduln mit einem höchsten Gewwicht. Habilitationsschrift, Bonn 1977.Google Scholar
  4. 4.
    A. Joseph. Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules. J. Lond Math. Soc. A paraître.Google Scholar
  5. 5.
    A. Joseph. On the annihilators of the simple subquotients of the principal series. Ann. Sci. Ec. Norm.Sup., à paraître.Google Scholar
  6. 6.
    A. Joseph. Towards the Jantzen conjecture, I et II. Preprints 1977.Google Scholar
  7. 7.
    A. Joseph. Kostant's problem, Goldie rank and the Gelfand-Kirillov conjecture. Preprint 1978.Google Scholar
  8. 8.
    T. Hiraï. Structure of induced representations and characters of irreducible representations of complex semi-simple Lie groups. Lecture Notes 266 (1972) 167–188.Google Scholar
  9. 9.
    I.G. Macdonald. Some irreducible representations of the Weyl groups. Bull. Lond. Math. Soc. 4 (1972) 148–150.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    W. Schmid. Two character identities for semi-simple Lie groups. Lecture Notes 587 (1977) 196–225.Google Scholar
  11. 11.
    B. Speh et D. Vogan. Reducibility of generalized principal series representations. A paraître.Google Scholar
  12. 12.
    D. Vogan. Irreducible characters of semi-simple Lie groups I. A paraître.Google Scholar
  13. 13.
    D. Vogan. Gelfand-Kirillov dimension for Harish-Chandra modules. A paraître.Google Scholar
  14. 14.
    G. Zuckerman. Tensor products of finite and infinite dimensional representations of semi-simple Lie groups. Ann. of Math. 106 (1977) 295–308.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Michel Duflo
    • 1
  1. 1.Université Paris 7 et Ecole PolytechniqueFrance

Personalised recommendations