Global solvability of bi-invariant differential operators on solvable Lie groups

  • Weita Chang
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 728)


Differential Operator Global Solvability Invariant Differential Operator Finite Center Fixed Point Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Borho, P. Gabriel, R. Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren, Lecture Notes in Math., 357, New York-Heidelberg-Berlin, Springer-Verlag, 1973.zbMATHGoogle Scholar
  2. [2]
    A. Cerèzo, F. Rouvière, Résolubilité locale d'un opérateur différentiel invariant du premier ordre, Ann. Sci. Ecole Norm. Sup., 4 (1971), 21–30.MathSciNetzbMATHGoogle Scholar
  3. [3]
    W. Chang, Invariant differential operators and P-convexity of solvable Lie groups (To appear).Google Scholar
  4. [4]
    W. Chang, Global solvability of the Laplacians on pseudo-Riemannian symmetric spaces (To appear in Journal of Functional Analysis).Google Scholar
  5. [5]
    M. Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie. Ann. Sci. Ecole Norm. Sup., 10 (1977), 265–288.MathSciNetzbMATHGoogle Scholar
  6. [6]
    M. Duflo, D. Wigner, Convexité pour les opérateurs différentiels invariants sur les groupes de Lie (preprint).Google Scholar
  7. [7]
    S. Helgason, Surjectivity of invariant differential operators on symmetric spaces I, Ann. of Math., 98 (1973), 451–479.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    L. Hörmander, Linear partial differential operators, New York, Springer-Verlag, 1963.zbMATHCrossRefGoogle Scholar
  9. [9]
    J. Rauch, D. Wigner, Global solvability of the Casimir operators, Ann. of Math. 103 (1976), 229–236.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    F. Rouvière, Sur la résolubilité locale des opérateurs bi-invariants. Annali Scuola Normale Superiore Pisa 3 (1976), 231–244.zbMATHGoogle Scholar
  11. [11]
    D. Wigner, Bi-invariant operators on nilpotent Lie groups, Inventiones Math. 41 (1977), 259–264.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Weita Chang
    • 1
  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations